Skip to main content

FPGA-Based Cognitive Radio Platform with Reconfigurable Front-End and Antenna

  • Chapter
  • First Online:
Computing Platforms for Software-Defined Radio

Abstract

This chapter presents an FPGA-based SDR platform which serves as a proof-of-concept for cognitive radio techniques. The platform is based on a fully reconfigurable hardware and operates as a 12.8 Mbps RF-to-Ethernet bridge in the Industrial, Scientific, and Medical (ISM) bands of 868 MHz and 2.45 GHz. The data-processing algorithms of the platform are implemented in an FPGA using Xilinx’s System Generator rapid prototyping tool. A MicroBlaze processor is also included to control the dynamic partial reconfiguration of the FPGA for small in-band frequency changes. In order to achieve full-band reconfiguration, a commercial RF front-end and a custom reconfigurable antenna are integrated. Design and implementation details are presented, along with measurement results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gungor, V.C., Hancke, G.P.: Industrial wireless sensor networks: challenges, design principles, and technical approaches. In: IEEE Trans. Ind. Electron. 56 (10), 4258–4265 (2009)

    Google Scholar 

  2. Bocca, M., Eriksson, L.M., Mahmood, A., Jantti, R., Kullaa, J.: A synchronized wireless sensor network for experimental modal analysis in structural health monitoring. Comput. Aided Civil Infrastruct. Eng. 26 (7), 483–499 (2011)

    Article  Google Scholar 

  3. Kaur, N., Monga, S.: Comparison of wired and wireless networks: a review. Int. J. Adv. Eng. Technol. V (II), 34–35 (2014)

    Google Scholar 

  4. Stenumgaard, P., Chilo, J., Ferrer-Coll, P., Angskog, P.: Challenges and conditions for wireless machine-to-machine communications in industrial environments. IEEE Commun. Mag. 51 (6), 187–192 (2013)

    Article  Google Scholar 

  5. Varela, M.S., Sanchez, M.G.: RMS delay and coherence bandwidth measurements in indoor radio channels in the UHF band. IEEE Trans. Veh. Technol. 50 (2), 515–525 (2001)

    Article  Google Scholar 

  6. Raut, R.D., Kulat, K.D.: SDR design for cognitive radio. In: 4th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), pp. 1–8 (2011)

    Google Scholar 

  7. Kaiser, T., Perez-Guirao, M.D., Wilzeck, A.: Cognitive radio & networks in the perspective of industrial wireless communications. In: Second International Workshop on Cognitive Radio and Advanced Spectrum Management. CogART, pp. 24–29 (2009)

    Google Scholar 

  8. Zong, W., Arslan, T.: A low power reconfigurable heterogeneous architecture for a mobile SDR system. In: International Conference on ICECE Technology, pp. 313–316 (2008)

    Google Scholar 

  9. EtherCAT: Industrial Ethernet technologies: overview (2014). http://www.ethercat.at/download/documents/Industrial_Ethernet_Technologies.pdf

  10. HART: WirelessHART technology overview (2014). http://en.hartcomm.org/hcp/tech/wihart/wireless_overview.html

    Google Scholar 

  11. ISA: ISA-100.11a-2011 wireless systems for industrial automation: Process control and related applications. https://www.isa.org/store/products/product-detail/?productId=118261

  12. Casado, F., Arriola, A., Arruti, E., Parron, J., Ortego, I., Sancho, I.: 2.45 GHz printed IFA on metallic environments: Clearance distance and retuning considerations. In: 6th European Conference on Antennas and Propagation (EUCAP), pp. 921–924 (2012)

    Google Scholar 

  13. Guocheng, L., Mrad, N., Xiao, G., Zhenzhong, L., Dayan, B.: Metallic environmental effect on RF-based energy transmission. IEEE Antennas Wirel. Propag. Lett. 11, 925–928 (2012)

    Article  Google Scholar 

  14. Mitola, J.: Software radios-survey, critical evaluation and future directions. In: National Telesystems Conference. NTC-92, pp. 13/15–13/23 (1992)

    Google Scholar 

  15. Torrego, R., Val, I., Muxika, E.: OQPSK cognitive modulator fully-FPGA-implemented via dynamic partial reconfiguration and rapid prototyping tools. Wireless Innovation Forum Conference on Technologies and Software Defined Radio (SDR-WInnComm) (2011)

    Google Scholar 

  16. Haessig, D., Hwang, J., Gallagher, S., Uhm, M.: A case study of Xilinx System Generator design flow for rapid development of SDR waveforms. In: SDR Forum Technical Conference (2005)

    Google Scholar 

  17. Xilinx: System Generator for DSP (2016). http://www.xilinx.com/products/design-tools/vivado/integration/sysgen.html

  18. Rodriguez, P.M., Torrego, R., Casado, F., Fernandez, Z., Mendicute, M., Arriola, A., Val, I.: Dynamic spectrum access integrated in a wideband cognitive RF-ethernet bridge for industrial control applications. J. Signal Process. Syst. 83 (1), 19–28 (2016)

    Article  Google Scholar 

  19. Casado, F., Torrego, R., Rodriguez, P., Arriola, A., Val, I.: Reconfigurable antenna and dynamic spectrum access algorithm: integration in a cognitive radio platform for reliable communications. J. Signal Process. Syst. 78 (3), 267–274 (2014)

    Article  Google Scholar 

  20. Vo, N.D., Le-Ngoc, T.: Maximum likelihood (ML) symbol timing recovery (STR) techniques for reconfigurable PAM and QAM modems. Wirel. Person. Commun. 41 (3), 379–391 (2007)

    Article  Google Scholar 

  21. Bagwari, A., Tomar, G.S.: Cooperative spectrum sensing in multiple energy detectors based cognitive radio networks using adaptive double-threshold scheme. Int. J. Electron. 101 (11), 1546–1558 (2014)

    Article  Google Scholar 

  22. Adlard, J.: Frequency shift filtering for cyclostationary signals, Ph.D. dissertation (2000)

    Google Scholar 

  23. Kosunen, M., Turunen, V., Kokkinen, K., Ryynanen, J.: Survey and analysis of cyclostationary signal detector implementations on FPGA. IEEE J. Emerging Sel. Top. Circuits Syst. 3 (4), 541–551 (2013)

    Article  Google Scholar 

  24. Luise, M., Reggiannini, R.: Carrier frequency recovery in all-digital modems for burst-mode transmissions. IEEE Trans. Commun. 43 (2/3/4), 1169–1178 (1995)

    Google Scholar 

  25. Meyr, H., Moeneclaey, M., Fechtel, S.: Digital Communication Receivers: Synchronization, Channel Estimation, and Signal Processing. Wiley Inc., New York (1997)

    Google Scholar 

  26. Nutaq: Nutaq Radio420X (2015). http://nutaq.com/en/products/radio420x

  27. Jong-Hyuk, L., Zhe-Jun, J., Chang-Wook, S., Tae-Yeoul, Y.: Simultaneous frequency and isolation reconfigurable MIMO PIFA using PIN diodes. IEEE Trans. Antennas Propag. 60 (12), 5939–5946 (2012)

    Article  Google Scholar 

  28. Azim, R., Islam, M.T., Misran, N.: Compact tapered-shape slot antenna for UWB applications. IEEE Antennas Wirel. Propag. Lett. 10, 1190–1193 (2011)

    Article  Google Scholar 

  29. Nashaat, D.M., Elsadek, H.A., Ghali, H.: Single feed compact Quad-Band PIFA antenna for wireless communication applications. IEEE Trans. Antennas Propag. 53 (8), 2631–2635 (2005)

    Article  Google Scholar 

  30. NXP: BAP55LX silicon pin diode (2016). http://www.nxp.com/products/rf/diodes/pin_diodes/BAP55LX.html

  31. Ilkyu, K., Rahmat-Samii, Y.: RF MEMS switchable slot patch antenna integrated with bias network. IEEE Trans. Antennas Propag. 59 (12), 4811–4815 (2011)

    Article  Google Scholar 

  32. Akerberg, J., Gidlund, M., Bjorkman, M.: Future research challenges in wireless sensor and actuator networks targeting industrial automation. In: 9th IEEE International Conference on Industrial Informatics (INDIN), pp. 410–415 (2011)

    Google Scholar 

  33. Val, I., Casado, F., Rodriguez, P.M., Arriola, A.: FPGA-based wideband channel emulator for evaluation of wireless sensor networks in industrial environments. In: IEEE International Conference on Emerging Technology and Factory Automation (ETFA), pp. 1–7 (2014)

    Google Scholar 

  34. CST: Microwave Studio (2016). http://www.cst.com

  35. Rodriguez, P.M., Val, I., Lizeaga, A., Mendicute, M.: Evaluation of cognitive radio for mission-critical and time-critical WSAN in industrial environments under interference. In: IEEE World Conference on Factory Communication Systems (WFCS) (2015)

    Google Scholar 

Download references

Acknowledgements

This work has been partly supported by EFITRANS (ETORTEK) and CIIRCOS (PC2013-68) projects of the Basque Government (Spain), and by COWITRACC (TEC2014-59490-C2-2-P) project of the Spanish Ministry of Economy and Competitiveness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aitor Arriola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arriola, A. et al. (2017). FPGA-Based Cognitive Radio Platform with Reconfigurable Front-End and Antenna. In: Hussain, W., Nurmi, J., Isoaho, J., Garzia, F. (eds) Computing Platforms for Software-Defined Radio. Springer, Cham. https://doi.org/10.1007/978-3-319-49679-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49679-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49678-8

  • Online ISBN: 978-3-319-49679-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics