Skip to main content

Status Epilepticus - Lessons and Challenges from Animal Models

  • Chapter
  • First Online:
Seizures in Critical Care

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 1759 Accesses

Abstract

Status epilepticus (SE) is not simply a prolonged seizure. Both the clinical course and the basic mechanisms are different from a single seizure. SE often fails to respond to sequential administration of antiepileptic drugs (AEDs), originally developed for treatment of chronic seizures. Pharmacoresistance to benzodiazepines and other AEDs, which is observed soon after onset of SE, leads to loss of the effectiveness of these medications and to poor clinical outcomes. Animal models have uncovered SE-induced changes in cellular and network pathophysiology, most of them maladaptive, leading to increased excitability. Whole-cell recordings from hippocampal slices obtained from animals in SE showed alteration in both inhibitory and excitatory postsynaptic physiology. These synaptic changes result at least in part from a decrease in functional synaptic GABAA receptors (through internalization/desensitization) accompanied by a simultaneous increase in the number of membrane NMDA receptors. These findings highlight the role played by receptor trafficking in transition to and maintenance of SE. They explain, at least in part, the development of pharmacoresistance to benzodiazepines and other GABAergic drugs. These SE-associated changes suggest that the current gold standard (benzodiazepine monotherapy) treats only half the problem and that consideration should be given to using a combination of GABAA agonists and NMDA antagonists in the initial treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen JW, Wasterlain CG. Status epilepticus: pathophysiology and management in adults. Lancet Neurol. 2006;5(3):246–56.

    Article  PubMed  Google Scholar 

  2. Shorvon S. Super-refractory status epilepticus: an approach to therapy in this difficult clinical situation. Epilepsia. 2011;52(Suppl 8):53–6.

    Article  CAS  PubMed  Google Scholar 

  3. Alvarez V, Drislane FW. Is favorable outcome possible after prolonged refractory status epilepticus? J Clin Neurophysiol. 2016;33(1):32–41.

    Google Scholar 

  4. Trinka E, Cock H, Hesdorffer D, et al. A definition and classification of status epilepticus--report of the ILAE task force on classification of status epilepticus. Epilepsia. 2015;56(10):1515–23.

    Article  PubMed  Google Scholar 

  5. DeLorenzo RJ, Hauser WA, Towne AR, et al. A prospective, population-based epidemiologic study of status epilepticus in Richmond, Virginia. Neurology. 1996;46(4):1029–35.

    Article  CAS  PubMed  Google Scholar 

  6. Rosenow F, Hamer HM, Knake S. The epidemiology of convulsive and nonconvulsive status epilepticus. Epilepsia. 2007;48(Suppl 8):82–4.

    Article  PubMed  Google Scholar 

  7. Wu YW, Shek DW, Garcia PA, et al. Incidence and mortality of generalized convulsive status epilepticus in California. Neurology. 2002;58(7):1070–6.

    Article  CAS  PubMed  Google Scholar 

  8. DeLorenzo RJ. Epidemiology and clinical presentation of status epilepticus. Adv Neurol. 2006;97:199–215.

    PubMed  Google Scholar 

  9. Turski WA, Cavalheiro EA, Schwarz M, et al. Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res. 1983;9(3):315–35.

    Article  CAS  PubMed  Google Scholar 

  10. Ben-Ari Y, Tremblay E, Ottersen OP, et al. Evidence suggesting secondary epileptogenic lesion after kainic acid: pre treatment with diazepam reduces distant but not local brain damage. Brain Res. 1979;165(2):362–5.

    Article  CAS  PubMed  Google Scholar 

  11. Honchar MP, Olney JW, Sherman WR. Systemic cholinergic agents induce seizures and brain damage in lithium-treated rats. Science. 1983;220(4594):323–5.

    Article  CAS  PubMed  Google Scholar 

  12. Punia V, Garcia CG, Hantus S. Incidence of recurrent seizures following hospital discharge in patients with LPDs (PLEDs) and nonconvulsive seizures recorded on continuous EEG in the critical care setting. Epilepsy Behav. 2015;49:250–4.

    Article  PubMed  Google Scholar 

  13. Pitkänen A, Schwartzkroin PA, Moshé SL. Models of seizures and epilepsy. Amsterdam; Boston: Elsevier Academic Press; 2006.

    Google Scholar 

  14. Wasterlain CG. Breakdown of brain polysomes in status epilepticus. Brain Res. 1972;39(1):278–84.

    Article  CAS  PubMed  Google Scholar 

  15. Wasterlain CG. Mortality and morbidity from serial seizures. An experimental study. Epilepsia. 1974;15(2):155–76.

    Article  CAS  PubMed  Google Scholar 

  16. Taber KH, McNamera JJ, Zornetzer SF. Status epilepticus: a new rodent model. Electroencephalogr Clin Neurophysiol. 1977;43(5):707–24.

    Article  CAS  PubMed  Google Scholar 

  17. de Campos CJ, Cavalheiro EA. Modification of the "kindling" method for obtaining experimental status epilepticus in rats. Arq Neuropsiquiatr. 1980;38(1):81–8.

    Article  PubMed  Google Scholar 

  18. McIntyre DC, Nathanson D, Edson N. A new model of partial status epilepticus based on kindling. Brain Res. 1982;250(1):53–63.

    Article  CAS  PubMed  Google Scholar 

  19. McIntyre DC, Stokes KA, Edson N. Status epilepticus following stimulation of a kindled hippocampal focus in intact and commissurotomized rats. Exp Neurol. 1986;94(3):554–70.

    Article  CAS  PubMed  Google Scholar 

  20. Milgram NW, Green I, Liberman M, et al. Establishment of status epilepticus by limbic system stimulation in previously unstimulated rats. Exp Neurol. 1985;88(2):253–64.

    Article  CAS  PubMed  Google Scholar 

  21. Cain DP, McKitrick DJ, Boon F. Rapid and reliable induction of partial status epilepticus in naive rats by low-frequency (3-Hz) stimulation of the amygdala. Epilepsy Res. 1992;12(1):51–5.

    Article  CAS  PubMed  Google Scholar 

  22. Inoue K, Morimoto K, Sato K, et al. Mechanisms in the development of limbic status epilepticus and hippocampal neuron loss: an experimental study in a model of status epilepticus induced by kindling-like electrical stimulation of the deep prepyriform cortex in rats. Acta Med Okayama. 1992;46(2):129–39.

    CAS  PubMed  Google Scholar 

  23. Inoue K, Morimoto K, Sato K, et al. A model of status epilepticus induced by intermittent electrical stimulation of the deep prepyriform cortex in rats. Jpn J Psychiatry Neurol. 1992;46(2):361–7.

    CAS  PubMed  Google Scholar 

  24. Handforth A, Ackermann RF. Hierarchy of seizure states in the electrogenic limbic status epilepticus model: behavioral and electrographic observations of initial states and temporal progression. Epilepsia. 1992;33(4):589–600.

    Article  CAS  PubMed  Google Scholar 

  25. Handforth A, Ackermann RF. Mapping of limbic seizure progressions utilizing the electrogenic status epilepticus model and the 14C-2-deoxyglucose method. Brain Res Brain Res Rev. 1995;20(1):1–23.

    Article  CAS  PubMed  Google Scholar 

  26. Lothman EW, Bertram EH, Bekenstein JW, et al. Self-sustaining limbic status epilepticus induced by 'continuous' hippocampal stimulation: electrographic and behavioral characteristics. Epilepsy Res. 1989;3(2):107–19.

    Article  CAS  PubMed  Google Scholar 

  27. VanLandingham KE, Lothman EW. Self-sustaining limbic status epilepticus. I. Acute and chronic cerebral metabolic studies: limbic hypermetabolism and neocortical hypometabolism. Neurology. 1991;41(12):1942–9.

    Article  CAS  PubMed  Google Scholar 

  28. Lothman EW, Bertram EH, Kapur J, et al. Recurrent spontaneous hippocampal seizures in the rat as a chronic sequela to limbic status epilepticus. Epilepsy Res. 1990;6(2):110–8.

    Article  CAS  PubMed  Google Scholar 

  29. Vicedomini JP, Nadler JV. A model of status epilepticus based on electrical stimulation of hippocampal afferent pathways. Exp Neurol. 1987;96(3):681–91.

    Article  CAS  PubMed  Google Scholar 

  30. Sloviter RS. Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science. 1987;235(4784):73–6.

    Article  CAS  PubMed  Google Scholar 

  31. Mazarati AM, Wasterlain CG, Sankar R, et al. Self-sustaining status epilepticus after brief electrical stimulation of the perforant path. Brain Res. 1998;801(1–2):251–3.

    Article  CAS  PubMed  Google Scholar 

  32. Nissinen J, Halonen T, Koivisto E, et al. A new model of chronic temporal lobe epilepsy induced by electrical stimulation of the amygdala in rat. Epilepsy Res. 2000;38(2–3):177–205.

    Article  CAS  PubMed  Google Scholar 

  33. van Vliet EA, Aronica E, Tolner EA, et al. Progression of temporal lobe epilepsy in the rat is associated with immunocytochemical changes in inhibitory interneurons in specific regions of the hippocampal formation. Exp Neurol. 2004;187(2):367–79.

    Article  PubMed  Google Scholar 

  34. Wang NC, Good LB, Marsh ST, et al. EEG stages predict treatment response in experimental status epilepticus. Epilepsia. 2009;50(4):949–52.

    Article  CAS  PubMed  Google Scholar 

  35. Treiman DM, Walton NY, Kendrick C. A progressive sequence of electroencephalographic changes during generalized convulsive status epilepticus. Epilepsy Res. 1990;5(1):49–60.

    Article  CAS  PubMed  Google Scholar 

  36. Sales ME. Muscarinic receptors as targets for anti-inflammatory therapy. Curr Opin Investig Drugs. 2010;11(11):1239–45.

    CAS  PubMed  Google Scholar 

  37. Curia G, Longo D, Biagini G, et al. The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods. 2008;172(2):143–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Buterbaugh GG, Michelson HB, Keyser DO. Status epilepticus facilitated by pilocarpine in amygdala-kindled rats. Exp Neurol. 1986;94(1):91–102.

    Article  CAS  PubMed  Google Scholar 

  39. Morrisett RA, Jope RS, Snead OC, 3rd. Effects of drugs on the initiation and maintenance of status epilepticus induced by administration of pilocarpine to lithium-pretreated rats. Exp Neurol 1987;97(1):193–200.

    Google Scholar 

  40. Suchomelova L, Baldwin RA, Kubova H, et al. Treatment of experimental status epilepticus in immature rats: dissociation between anticonvulsant and antiepileptogenic effects. Pediatr Res. 2006;59(2):237–43.

    Article  CAS  PubMed  Google Scholar 

  41. Naylor DE, Wasterlain CG. GABA synapses and the rapid loss of inhibition to dentate gyrus granule cells after brief perforant-path stimulation. Epilepsia. 2005;46(Suppl 5):142–7.

    Article  CAS  PubMed  Google Scholar 

  42. Naylor DE, Liu H, Wasterlain CG. Trafficking of GABA(A) receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J Neurosci. 2005;25(34):7724–33.

    Article  CAS  PubMed  Google Scholar 

  43. Kapur J, Macdonald RL. Rapid seizure-induced reduction of benzodiazepine and Zn2+ sensitivity of hippocampal dentate granule cell GABAA receptors. J Neurosci. 1997;17(19):7532–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mazarati AM, Baldwin RA, Sankar R, et al. Time-dependent decrease in the effectiveness of antiepileptic drugs during the course of self-sustaining status epilepticus. Brain Res. 1998;814(1–2):179–85.

    Article  CAS  PubMed  Google Scholar 

  45. 22nd IEC Proceedings. Epilepsia 1997;38:1–284.

    Google Scholar 

  46. Naylor DE, Liu H, Niquet J, et al. Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus. Neurobiol Dis. 2013;54:225–38.

    Article  CAS  PubMed  Google Scholar 

  47. Johnson EA, Kan RK. The acute phase response and soman-induced status epilepticus: temporal, regional and cellular changes in rat brain cytokine concentrations. J Neuroinflammation. 2010;7:40.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Miller SL, Aroniadou-Anderjaska V, Figueiredo TH, et al. A rat model of nerve agent exposure applicable to the pediatric population: The anticonvulsant efficacies of atropine and GluK1 antagonists. Toxicol Appl Pharmacol. 2015;284(2):204–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McDonough Jr JH, Shih TM. Pharmacological modulation of soman-induced seizures. Neurosci Biobehav Rev. 1993;17(2):203–15.

    Article  CAS  PubMed  Google Scholar 

  50. CDC, http://www.bt.cdc.gov/agent/sarin/basics/facts.asp.

  51. Smythies J, Golomb B. Nerve gas antidotes. J R Soc Med. 2004;97(1):32.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nakajima T, Ohta S, Morita H, et al. Epidemiological study of sarin poisoning in Matsumoto City, Japan. J Epidemiol. 1998;8(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  53. Walton NY, Treiman DM. Experimental secondarily generalized convulsive status epilepticus induced by D,L-homocysteine thiolactone. Epilepsy Res. 1988;2(2):79–86.

    Article  CAS  PubMed  Google Scholar 

  54. Wasterlain CG. Developmental brain damage after chemically induced epileptic seizures. Eur Neurol. 1975;13(6):495–8.

    Article  CAS  PubMed  Google Scholar 

  55. Soderfeldt B, Kalimo H, Olsson Y, et al. Bicuculline-induced epileptic brain injury. Transient and persistent cell changes in rat cerebral cortex in the early recovery period. Acta Neuropathol. 1983;62(1–2):87–95.

    Article  CAS  PubMed  Google Scholar 

  56. el Hamdi G, de Vasconcelos AP, Vert P, et al. An experimental model of generalized seizures for the measurement of local cerebral glucose utilization in the immature rat. I. Behavioral characterization and determination of lumped constant. Brain Res Dev Brain Res. 1992;69(2):233–42.

    Article  PubMed  Google Scholar 

  57. Bernard C. Chapter 6—Hippocampal slices: designing and interpreting studies in epilepsy research A2. In: Pitkänen A, Schwartzkroin PA, Moshé SL, editors. Models of Seizures and Epilepsy. Burlington: Academic Press; 2006. p. 59–72.

    Chapter  Google Scholar 

  58. Reddy DS, Kuruba R. Experimental models of status epilepticus and neuronal injury for evaluation of therapeutic interventions. Int J Mol Sci. 2013;14(9):18284–318.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Avoli M, Barbarosie M, Lucke A, et al. Synchronous GABA-mediated potentials and epileptiform discharges in the rat limbic system in vitro. J Neurosci. 1996;16(12):3912–24.

    CAS  PubMed  Google Scholar 

  60. Salami P, Levesque M, Avoli M. High frequency oscillations can pinpoint seizures progressing to status epilepticus. Exp Neurol. 2016;280:24–9.

    Google Scholar 

  61. Heinemann U, Buchheim K, Gabriel S, et al. Coupling of electrical and metabolic activity during epileptiform discharges. Epilepsia. 2002;43(Suppl 5):168–73.

    Article  PubMed  Google Scholar 

  62. Traynelis SF, Dingledine R. Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J Neurophysiol. 1988;59(1):259–76.

    CAS  PubMed  Google Scholar 

  63. Feng Z, Durand DM. Effects of potassium concentration on firing patterns of low-calcium epileptiform activity in anesthetized rat hippocampus: inducing of persistent spike activity. Epilepsia. 2006;47(4):727–36.

    Article  CAS  PubMed  Google Scholar 

  64. Xiong ZQ, Stringer JL. Prolonged bursts occur in normal calcium in hippocampal slices after raising excitability and blocking synaptic transmission. J Neurophysiol. 2001;86(5):2625–8.

    CAS  PubMed  Google Scholar 

  65. Stoppini L, Buchs PA, Muller D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods. 1991;37(2):173–82.

    Article  CAS  PubMed  Google Scholar 

  66. Heinemann UWE, Kann O, Schuchmann S. Chapter 4—An overview of in vitro seizure models in acute and organotypic slices A2. In: Pitkänen A, Schwartzkroin PA, Moshé SL, editors. Models of Seizures and Epilepsy. Burlington: Academic Press; 2006. p. 35–44.

    Chapter  Google Scholar 

  67. Kovacs R, Schuchmann S, Gabriel S, et al. Free radical-mediated cell damage after experimental status epilepticus in hippocampal slice cultures. J Neurophysiol. 2002;88(6):2909–18.

    Article  CAS  PubMed  Google Scholar 

  68. Zepeda A, Arias C, Sengpiel F. Optical imaging of intrinsic signals: recent developments in the methodology and its applications. J Neurosci Methods. 2004;136(1):1–21.

    Article  PubMed  Google Scholar 

  69. Phillips KF, Deshpande LS, DeLorenzo RJ. Hypothermia reduces calcium entry via the N-methyl-D-aspartate and ryanodine receptors in cultured hippocampal neurons. Eur J Pharmacol. 2013;698(1–3):186–92.

    Article  CAS  PubMed  Google Scholar 

  70. Wasterlain C, Treiman D, et al. Status epilepticus: Mechanisms of brain damage and treatment. New York: Raven Press; 1983. p. 15–35.

    Google Scholar 

  71. Fernandez-Torre JL, Kaplan PW, Hernandez-Hernandez MA. New understanding of nonconvulsive status epilepticus in adults: treatments and challenges. Expert Rev Neurother. 2015;15(12):1455–73.

    Article  CAS  PubMed  Google Scholar 

  72. Mazarati AM, Wasterlain CG. N-methyl-D-asparate receptor antagonists abolish the maintenance phase of self-sustaining status epilepticus in rat. Neurosci Lett. 1999;265(3):187–90.

    Article  CAS  PubMed  Google Scholar 

  73. Wasterlain CG, Baldwin R, Naylor DE, et al. Rational polytherapy in the treatment of acute seizures and status epilepticus. Epilepsia. 2011;52(Suppl 8):70–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Staley KJ, Soldo BL, Proctor WR. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science. 1995;269(5226):977–81.

    Article  CAS  PubMed  Google Scholar 

  75. Goodkin HP, Yeh JL, Kapur J. Status epilepticus increases the intracellular accumulation of GABAA receptors. J Neurosci. 2005;25(23):5511–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bertram EH, Lothman EW. NMDA receptor antagonists and limbic status epilepticus: a comparison with standard anticonvulsants. Epilepsy Res. 1990;5(3):177–84.

    Article  CAS  PubMed  Google Scholar 

  77. Glauser T, Shinnar S, Gloss D, et al. Evidence-Based Guideline: Treatment of Convulsive Status Epilepticus in Children and Adults: Report of the Guideline Committee of the American Epilepsy Society. Epilepsy Curr. 2016;16(1):48–61.

    Google Scholar 

  78. Silbergleit R, Durkalski V, Lowenstein D, et al. Intramuscular versus intravenous therapy for prehospital status epilepticus. N Engl J Med. 2012;366(7):591–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to extend special thank you to Roland McFarland, Dorota Kaminska, Ph.D., and Lyn Clarito, Pharm.D for their helpful comments on this manuscript. This work was supported by Merit Review Award # I01 BX000273-07 from the United States Department of Veterans Affairs, by NINDS (grant UO1 NS074926; CW), and by the James and Debbie Cho Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Y. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Keselman, I., Wasterlain, C.G., Niquet, J., Chen, J.W.Y. (2017). Status Epilepticus - Lessons and Challenges from Animal Models. In: Varelas, P., Claassen, J. (eds) Seizures in Critical Care. Current Clinical Neurology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-49557-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49557-6_1

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-49555-2

  • Online ISBN: 978-3-319-49557-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics