Skip to main content

Cell Transplantation Therapy for Glaucoma

  • Chapter
  • First Online:
Cellular Therapies for Retinal Disease

Abstract

Glaucoma, a major cause of blindness, is a neurodegenerative disease characterized by progressive and irreversible loss of retinal ganglion cells and degeneration of optic nerve. Like other parts of the central nervous system, retinal ganglion cells do not regenerate. Current therapies may prevent or delay further damage, but cannot restore vision. Cell transplantation therapies hold great promise for slowing disease progression and restoring vision in glaucoma. Here, we summarize the current status of cell transplantation in glaucoma therapy. Accumulating evidence shows that transplanted cells can secrete and release neuroprotective factors to prevent or stop disease progression, and donor cells may replace lost cells and restore function. We further discuss the translational progress of cell transplantation for different cell types and the prospects of harnessing the endogenous regenerative potential of the eye. This discussion provides insights to achieve the goal of restoring vision in glaucoma using cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A. The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res. 2012;31:152–81.

    Article  CAS  PubMed  Google Scholar 

  2. Weinreb RN, Tee Khaw P. Primary open-angle glaucoma. Lancet. 2004;363:1711–20.

    Article  PubMed  Google Scholar 

  3. Friedman DS, Wilson MR, Liebmann JM, Fechtner RD, Weinreb RN. An evidence-based assessment of risk factors for the progression of ocular hypertension and glaucoma. Am J Ophthalmol. 2004;138:S19–31.

    Article  PubMed  Google Scholar 

  4. Much JW, Liu C, Piltz-Seymour JR. Long-term survival of central visual field in end-stage glaucoma. Ophthalmology. 2008;115:1162–6.

    Article  PubMed  Google Scholar 

  5. Walland MJ, et al. Failure of medical therapy despite normal intraocular pressure. Clin Exp Ophthalmol. 2006;34:827–36.

    Article  PubMed  Google Scholar 

  6. Shields MB. Normal-tension glaucoma: is it different from primary open-angle glaucoma? Curr Opin Ophthalmol. 2008;19:85–8.

    Article  PubMed  Google Scholar 

  7. Shin JJ, et al. Transplanted neuroblasts differentiate appropriately into projection neurons with correct neurotransmitter and receptor phenotype in neocortex undergoing targeted projection neuron degeneration. J Neurosci. 2000;20:7404–16.

    CAS  PubMed  Google Scholar 

  8. Ideguchi M, Palmer TD, Recht LD, Weimann JM. Murine embryonic stem cell-derived pyramidal neurons integrate into the cerebral cortex and appropriately project axons to subcortical targets. J Neurosci. 2010;30:894–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Englund U, Bjorklund A, Wictorin K, Lindvall O, Kokaia M. Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. Proc Natl Acad Sci U S A. 2002;99:17089–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. MacLaren RE, et al. Retinal repair by transplantation of photoreceptor precursors. Nature. 2006;444:203–7.

    Article  CAS  PubMed  Google Scholar 

  11. Luo J, et al. Human retinal progenitor cell transplantation preserves vision. J Biol Chem. 2014;289(10):6362–71.

    Google Scholar 

  12. Pearson RA. Advances in repairing the degenerate retina by rod photoreceptor transplantation. Biotechnol Adv. 2014;32:485–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lamba DA, Gust J, Reh TA. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell. 2009;4:73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Venugopalan P, et al. Transplanted neurons integrate into adult retinas and respond to light. Nat Commun. 2016;7:10472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Streilein JW. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol. 2003;3:879–89.

    Article  CAS  PubMed  Google Scholar 

  16. Ambati J, Atkinson JP, Gelfand BD. Immunology of age-related macular degeneration. Nat Rev Immunol. 2013;13:438–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schwartz SD, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379:713–20.

    Article  CAS  PubMed  Google Scholar 

  18. Schwartz SD, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385:509–16.

    Article  PubMed  Google Scholar 

  19. Klassen H. Stem cells in clinical trials for treatment of retinal degeneration. Expert Opin Biol Ther. 2015;2598:1–8.

    Google Scholar 

  20. Gonzalez-Cordero A, et al. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol. 2013;31:741–7.

    Article  CAS  PubMed  Google Scholar 

  21. Sanes JR, Masland RH. The types of retinal ganglion cells: current status and implications for neuronal classification. Annu Rev Neurosci. 2014;38:150421150146009.

    Google Scholar 

  22. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002;295:1065–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Erskine L, Herrera E. The retinal ganglion cell axon’s journey: insights into molecular mechanisms of axon guidance. Dev Biol. 2007;308:1–14.

    Article  CAS  PubMed  Google Scholar 

  24. Petros TJ, Rebsam A, Mason CA. Retinal axon growth at the optic chiasm: to cross or not to cross. Annu Rev Neurosci. 2008;31:295–315.

    Article  CAS  PubMed  Google Scholar 

  25. Dhande OS, Huberman AD. Retinal ganglion cell maps in the brain: implications for visual processing. Curr Opin Neurobiol. 2014;24:133–42.

    Article  CAS  PubMed  Google Scholar 

  26. Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Intravitreally transplanted dental pulp stem cells promote Neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Ophthalmol Vis Sci. 2013;54:7544–56.

    Article  CAS  PubMed  Google Scholar 

  27. Cho J-H, Mao C-A, Klein WH. Adult mice transplanted with embryonic retinal progenitor cells: new approach for repairing damaged optic nerves. Mol Vis. 2012;18:2658–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One. 2014;9:e109305.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Singhal S, et al. Human Muller glia with stem cell characteristics differentiate into retinal ganglion cell (RGC) precursors in vitro and partially restore RGC function in vivo following transplantation. Stem Cells Transl Med. 2012;1:188–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Johnson TV, Bull ND, Martin KR. Neurotrophic factor delivery as a protective treatment for glaucoma. Exp Eye Res. 2011;93:196–203.

    Article  CAS  PubMed  Google Scholar 

  31. Ko ML, Hu DN, Ritch R, Sharma SC, Chen CF. Patterns of retinal ganglion cell survival after brain-derived neurotrophic factor administration in hypertensive eyes of rats. Neurosci Lett. 2001;305:139–42.

    Article  CAS  PubMed  Google Scholar 

  32. Johnson TV, Martin KR. Cell transplantation approaches to retinal ganglion cell neuroprotection in glaucoma. Curr Opin Pharmacol. 2013;13:78–82.

    Article  CAS  PubMed  Google Scholar 

  33. Ng TK, Fortino VR, Pelaez D, Cheung HS. Progress of mesenchymal stem cell therapy for neural and retinal diseases. World J Stem Cells. 2014;6:111–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mendicino M, Bailey AM, Wonnacott K, Puri RK, Bauer SR. MSC-based product characterization for clinical trials: an FDA perspective. Cell Stem Cell. 2014;14:141–5.

    Article  CAS  PubMed  Google Scholar 

  35. Dominici M, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International society for cellular therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  36. Yu S, Tanabe T, Dezawa M, Ishikawa H, Yoshimura N. Effects of bone marrow stromal cell injection in an experimental glaucoma model. Biochem Biophys Res Commun. 2006;344:1071–9.

    Article  CAS  PubMed  Google Scholar 

  37. Johnson TV, et al. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol Vis Sci. 2010;51:2051–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Harper MM, et al. Transplantation of BDNF-secreting mesenchymal stem cells provides neuroprotection in chronically hypertensive rat eyes. Investig Ophthalmol Vis Sci. 2011;52:4506–15.

    Article  CAS  Google Scholar 

  39. Levkovitch-Verbin H, et al. Intravitreal injections of neurotrophic factors secreting mesenchymal stem cells are neuroprotective in rat eyes following optic nerve transaction. Investig Ophthalmol Vis Sci. 2010;51:6394–400.

    Article  Google Scholar 

  40. Zhao T, et al. Protective effects of human umbilical cord blood stem cell intravitreal transplantation against optic nerve injury in rats. Graefes Arch Clin Exp Ophthalmol. 2011;249:1021–8.

    Article  PubMed  Google Scholar 

  41. Zwart I, et al. Umbilical cord blood mesenchymal stromal cells are neuroprotective and promote regeneration in a rat optic tract model. Exp Neurol. 2009;216:439–48.

    Article  PubMed  Google Scholar 

  42. Sugitani S, et al. The potential neuroprotective effect of human adipose stem cells conditioned medium against light-induced retinal damage. Exp Eye Res. 2013;116:254–64.

    Article  CAS  PubMed  Google Scholar 

  43. Johnson TV, et al. Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome. Brain. 2014;137:503–19.

    Article  PubMed  Google Scholar 

  44. Dreixler JC, et al. Delayed Administration of Bone Marrow Mesenchymal Stem Cell Conditioned Media Significantly Improves Outcome after retinal ischemia in rats. Invest Ophthalmol Vis Sci. 2014; doi:10.1167/iovs.13-11683.

    PubMed  PubMed Central  Google Scholar 

  45. Singer NG, Caplan AI. Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol. 2011;6:457–78.

    Article  CAS  PubMed  Google Scholar 

  46. Le Blanc K, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008;371:1579–86.

    Article  PubMed  Google Scholar 

  47. Heldman AW, et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA. 2014;311:62–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mead B, et al. Stem cell treatment of degenerative eye disease. Stem Cell Res. 2015;14:243–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Siqueira RC, Messias A, Voltarelli JC, Scott IU, Jorge R. Intravitreal injection of autologous bone marrow–derived mononuclear cells for hereditary retinal dystrophy. Retina. 2011;31:1207–14.

    Article  PubMed  Google Scholar 

  50. Kuriyan AE,et al. Vision Loss after intravitreal injection of autologous “Stem Cells” for AMD. N Engl J Med. 2017;376(11):1047-1053.

    Google Scholar 

  51. Ma J, et al. Transplantation of human neural progenitor cells expressing IGF-1 enhances retinal ganglion cell survival. PLoS One. 2015;10(4):e0125695.

    Google Scholar 

  52. Woodhall E, West AK, Chuah MI. Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Brain Res Mol Brain Res. 2001;88:203–13.

    Article  CAS  PubMed  Google Scholar 

  53. Dai C, Qin Yin Z, Li Y, Raisman G, Li D. Survival of retinal ganglion cells in slice culture provides a rapid screen for olfactory ensheathing cell preparations. Brain Res. 2010;1354:40–6.

    Article  CAS  PubMed  Google Scholar 

  54. Wu MM, et al. Death of axotomized retinal ganglion cells delayed after intraoptic nerve transplantation of olfactory ensheathing cells in adult rats. Cell Transplant. 2010;19:159–66.

    Article  PubMed  Google Scholar 

  55. Sieving PA, et al. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci U S A. 2006;103:3896–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang Y, Klassen HJ, Tucker BA, Perez M-TR, Young MJ. CNS progenitor cells promote a permissive environment for Neurite outgrowth via a matrix metalloproteinase-2-dependent mechanism. J Neurosci. 2007;27:4499–506.

    Article  CAS  PubMed  Google Scholar 

  57. Sakaguchi DS, et al. Transplantation of neural progenitor cells into the developing retina of the Brazilian opossum: an in vivo system for studying stem/progenitor cell plasticity. Dev Neurosci. 2004;26:336–45.

    Article  CAS  PubMed  Google Scholar 

  58. Klassen H, et al. Neural precursors isolated from the developing cat brain show retinal integration following transplantation to the retina of the dystrophic cat. Vet Ophthalmol. 2007;10:245–53.

    Article  CAS  PubMed  Google Scholar 

  59. Mellough CB, Cui Q, Harvey AR. Treatment of adult neural progenitor cells prior to transplantation affects graft survival and integration in a neonatal and adult rat model of selective retinal ganglion cell depletion. Restor Neurol Neurosci. 2007;25:177–90.

    PubMed  Google Scholar 

  60. Young MJ, Ray J, Whiteley SJ, Klassen H, Gage FH. Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats. Mol Cell Neurosci. 2000;16:197–205.

    Article  CAS  PubMed  Google Scholar 

  61. Qiu G, et al. Photoreceptor differentiation and integration of retinal progenitor cells transplanted into transgenic rats. Exp Eye Res. 2005;80:515–25.

    Article  CAS  PubMed  Google Scholar 

  62. Sakaguchi DS, Van Hoffelen SJ, Young MJ. Differentiation and morphological integration of neural progenitor cells transplanted into the developing mammalian eye. Ann N Y Acad Sci. 2003;995:127–39.

    Article  CAS  PubMed  Google Scholar 

  63. Van Hoffelen SJ, Young MJ, Shatos MA, Sakaguchi DS. Incorporation of murine brain progenitor cells into the developing mammalian retina. Invest Ophthalmol Vis Sci. 2003;44:426–34.

    Article  PubMed  Google Scholar 

  64. Bartsch U, et al. Retinal cells integrate into the outer nuclear layer and differentiate into mature photoreceptors after subretinal transplantation into adult mice. Exp Eye Res. 2008;86:691–700.

    Article  CAS  PubMed  Google Scholar 

  65. Hertz J, et al. Survival and integration of developing and progenitor-derived retinal ganglion cells following transplantation. Cell Transplant. 2013; doi:10.3727/096368913X667024.

    PubMed  Google Scholar 

  66. Klassen H, Sakaguchi DS, Young MJ. Stem cells and retinal repair. Prog Retin Eye Res. 2004;23:149–81.

    Article  CAS  PubMed  Google Scholar 

  67. Hori J, et al. Neural progenitor cells lack immunogenicity and resist destruccion as allografts. Stem Cells. 2003;21:405–16.

    Article  PubMed  Google Scholar 

  68. Goldman D. Müller glial cell reprogramming and retina regeneration. Nat Rev Neurosci. 2014;15:431–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Becker S, et al. Allogeneic transplantation of Müller-derived retinal ganglion cells improves retinal function in a feline model of ganglion cell depletion. Stem Cells Transl Med. 2015; doi:10.5966/sctm.2015-0125.

    Google Scholar 

  70. Ballios BG, van der Kooy D. Biology and therapeutic potential of adult retinal stem cells. Can J Ophthalmol. 2010;45:342–51.

    Article  PubMed  Google Scholar 

  71. Balenci L, van der Kooy D. Notch signaling induces retinal stem-like properties in perinatal neural retina progenitors and promotes symmetric divisions in adult retinal stem cells. Stem Cells Dev. 2014;23:230–44.

    Article  CAS  PubMed  Google Scholar 

  72. Chen M, et al. Lgr5+ amacrine cells possess regenerative potential in the retina of adult mice. Aging Cell. 2015; doi:10.1111/acel.12346.

    Google Scholar 

  73. Thomson JA, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  74. Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  75. Hockemeyer D, Jaenisch R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell. 2016;18:573–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yu J, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.

    Article  CAS  PubMed  Google Scholar 

  77. Al-Shamekh S, Goldberg JL. Retinal repair with induced pluripotent stem cells. Transl Res. 2013; doi:10.1016/j.trsl.2013.11.002.

    PubMed  PubMed Central  Google Scholar 

  78. Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer. 2011;11:268–77.

    Article  CAS  PubMed  Google Scholar 

  79. Livesey FJ, Cepko CL. Vertebrate neural cell-fate determination: lessons from the retina. Nat Rev Neurosci. 2001;2:109–18.

    Article  CAS  PubMed  Google Scholar 

  80. Bassett EA, Wallace VA. Cell fate determination in the vertebrate retina. Trends Neurosci. 2012;35:565–73.

    Article  CAS  PubMed  Google Scholar 

  81. Edlund T, Jessell TM. Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell. 1999;96:211–24.

    Article  CAS  PubMed  Google Scholar 

  82. Lamba DA, Karl MO, Ware CB, Reh TA. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A. 2006;103:12769–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen M, et al. Generation of retinal ganglion-like cells from reprogrammed mouse fibroblasts. Invest Ophthalmol Vis Sci. 2010;51:5970–8.

    Article  PubMed  Google Scholar 

  84. Jagatha B, et al. In vitro differentiation of retinal ganglion-like cells from embryonic stem cell derived neural progenitors. Biochem Biophys Res Commun. 2009;380:230–5.

    Article  CAS  PubMed  Google Scholar 

  85. Parameswaran S, et al. Induced pluripotent stem cells generate both retinal ganglion cells and photoreceptors: therapeutic implications in degenerative changes in glaucoma and age-related macular degeneration. Stem Cells. 2010;28:695–703.

    Article  CAS  PubMed  Google Scholar 

  86. Eiraku M, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011;472:51–6.

    Article  CAS  PubMed  Google Scholar 

  87. Nakano T, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012;10:771–85.

    Article  CAS  PubMed  Google Scholar 

  88. Wang SW, et al. Requirement for math5 in the development of retinal ganglion cells. Genes Dev. 2001;15:24–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mu X, et al. A gene network downstream of transcription factor Math5 regulates retinal progenitor cell competence and ganglion cell fate. Dev Biol. 2005;280:467–81.

    Article  CAS  PubMed  Google Scholar 

  90. Xiang M, Jiang H, Jin K, Qiu F. Molecular control of retinal ganglion cell specification and differentiation. cdn.intechweb.org . 2011. Available at http://cdn.intechweb.org/pdfs/23817.pdf.

  91. Jiang Y, et al. Transcription factors SOX4 and SOX11 function redundantly to regulate the development of mouse retinal ganglion cells. J Biol Chem. 2013;288:18429–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu F, et al. Two transcription factors, Pou4f2 and Isl1, are sufficient to specify the retinal ganglion cell fate. Proc Natl Acad Sci U S A. 2015;112(13):E1559–68.

    Google Scholar 

  93. Riazifar H, Jia Y, Chen J, Lynch G, Huang T. Chemically induced specification of retinal ganglion cells from human embryonic and induced pluripotent stem cells. Stem Cells Transl Med. 2014; doi:10.5966/sctm.2013-0147.

    PubMed  PubMed Central  Google Scholar 

  94. Sluch VM, et al. Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line. Sci Rep. 2015;5:16595.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Tanaka T, et al. Generation of retinal ganglion cells with functional axons from human induced pluripotent stem cells. Sci Rep. 2015;5:1–11.

    CAS  Google Scholar 

  96. Ohlemacher SK, et al. Stepwise differentiation of retinal ganglion cells from human pluripotent stem cells enables analysis of glaucomatous neurodegeneration. Stem Cells. 2016;34(6):1553–62.

    Google Scholar 

  97. Kador KE, Goldberg JL. Scaffolds and stem cells: delivery of cell transplants for retinal degenerations. Expert Rev Ophthalmol. 2012;7:459–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Almony A, et al. Techniques, rationale, and outcomes of internal limiting membrane peeling. Retina. 2012;32:877–91.

    Article  PubMed  Google Scholar 

  99. Song W-T, Zhang X-Y, Xia X-B. Atoh7 promotes the differentiation of retinal stem cells derived from Müller cells into retinal ganglion cells by inhibiting Notch signaling. Stem Cell Res Ther. 2013;4:94.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Vierbuchen T, et al. Supplementary data – direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463:1035–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lamba DA, et al. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One. 2010;5:e8763.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey L. Goldberg M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhang, X., Venugopalan, P., Goldberg, J.L. (2017). Cell Transplantation Therapy for Glaucoma. In: Schwartz, S., Nagiel, A., Lanza, R. (eds) Cellular Therapies for Retinal Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-49479-1_6

Download citation

Publish with us

Policies and ethics