Skip to main content

Retinal Organoids: An Emerging Technology for Retinal Disease Research and Therapy

  • Chapter
  • First Online:
Cellular Therapies for Retinal Disease

Abstract

Retinal cell replacement is a promising therapeutic approach to restore vision to millions of people worldwide. Three-dimensional culture methods can produce large numbers of human embryonic retinal cells from pluripotent stem cells (PSCs), stimulating optimism for clinical use. These cells develop in a tissue environment that recapitulates many aspects of development in vivo. Most notably, the retinal progenitor cells are competent to give rise to all major retinal cells types, which segregate to rudimentary retinal layers. The cells are expected to mimic their natural counterparts at the molecular level, but that has yet to be demonstrated. These methodologies can produce impressive embryonic retinal structures, but will require optimization before meeting clinical needs. Using current methods PSC-derived retinal organoids do not fully mature, suggesting that the in vitro environment does not reproduce that of late fetal development. However, studies to date suggest that immature photoreceptor or retinal ganglion cells, roughly those of mid-gestation, function best for transplantation. This developmental stage appears to be well reproduced in vitro, and therefore the PSC-derived retinal cells may be appropriate for cell replacement approaches. Three-dimensional culture methods using PSC-derived cells offer hope to better understand and treat retinal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMD:

Age-related macular degeneration

BMP:

Bone morphogenetic protein

ECM:

Extracellular matrix

FBS:

Fetal bovine serum

GFP:

Green fluorescent protein

hESC:

Human embryonic stem cell

hiPSC:

Human iPSC

ILM:

Inner limiting membrane

INL:

Inner nuclear layer

IPL:

Inner plexiform layer

iPSC:

Induced pluripotent stem cell

mESC:

Mouse embryonic stem cell

NR:

Neural retina

ONL:

Outer nuclear layer

OPL:

Outer plexiform layer

OV:

Optic vesicle

PSC:

Pluripotent stem cell

RP:

Retinitis pigmentosa

RPE:

Retinal pigment epithelium

References

  1. Zarbin M. Cell-based therapy for degenerative retinal disease. Trends Mol Med. 2016;22(2):115–34.

    Article  PubMed  Google Scholar 

  2. Huang Y, Enzmann V, Ildstad ST. Stem cell-based therapeutic applications in retinal degenerative diseases. Stem Cell Rev. 2011;7(2):434–45.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Jayakody SA, Gonzalez-Cordero A, Ali RR, Pearson RA. Cellular strategies for retinal repair by photoreceptor replacement. Prog Retin Eye Res. 2015;46:31–66.

    Article  PubMed  Google Scholar 

  5. Fine I, Cepko CL, Landy MS. Vision research special issue: sight restoration: prosthetics, optogenetics and gene therapy. Vis Res. 2015;111(Pt B):115–23.

    Article  PubMed  Google Scholar 

  6. Mellough CB, Collin J, Sernagor E, Wride NK, Steel DHW, Lako M. Lab generated retina: realizing the dream. Vis Neurosci. 2014;31(4–5):317–32.

    Article  PubMed  Google Scholar 

  7. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  9. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011;472(7341):51–6.

    Article  CAS  PubMed  Google Scholar 

  10. Haston KM, Finkbeiner S. Clinical trials in a dish: the potential of pluripotent stem cells to develop therapies for neurodegenerative diseases. Annu Rev Pharmacol Toxicol. 2016;56:489–510.

    Article  CAS  PubMed  Google Scholar 

  11. Chiba K, Hockemeyer D. Genome editing in human pluripotent stem cells using site-specific nucleases. Methods Mol Biol. 2015;1239:267–80.

    Article  CAS  PubMed  Google Scholar 

  12. Sterneckert JL, Reinhardt P, Schöler HR. Investigating human disease using stem cell models. Nat Rev Genet. 2014;15(9):625–39.

    Article  CAS  PubMed  Google Scholar 

  13. Fox IJ, Daley GQ, Goldman SA, Huard J, Kamp TJ, Trucco M. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease. Science. 2014;345(6199):1247391.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhao T, Zhang Z-N, Westenskow PD, Todorova D, Hu Z, Lin T, et al. Humanized mice reveal differential immunogenicity of cells derived from autologous induced pluripotent stem cells. Cell Stem Cell. 2015;17(3):353–9.

    Article  CAS  PubMed  Google Scholar 

  15. Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci. 2009;106(39):16698–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Phillips MJ, Wallace KA, Dickerson SJ, Miller MJ, Verhoeven AD, Martin JM, et al. Blood-derived human iPS cells generate optic vesicle-like structures with the capacity to form retinal laminae and develop synapses. Invest Ophthalmol Vis Sci. 2012;53(4):2007–19.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012;10(6):771–85.

    Article  CAS  PubMed  Google Scholar 

  18. Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN, Cao L-H, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun. 2014;5:4047.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuwahara A, Ozone C, Nakano T, Saito K, Eiraku M, Sasai Y. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat Commun. 2015;6:6286.

    Article  CAS  PubMed  Google Scholar 

  20. Vandamme TF. Use of rodents as models of human diseases. J Pharm Bioallied Sci. 2014;6(1):2–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Shanks N, Greek R, Greek J. Are animal models predictive for humans? Philos Ethics Humanit Med. 2009;4:2.

    Article  PubMed  PubMed Central  Google Scholar 

  22. van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V, et al. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7(3):e1000245.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xu XL, Fang Y, Lee TC, Forrest D, Gregory-Evans C, Almeida D, et al. Retinoblastoma has properties of a cone precursor tumor and depends upon cone-specific MDM2 signaling. Cell. 2009;137(6):1018–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Avior Y, Sagi I, Benvenisty N. Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol. 2016;17(3):170–82.

    Article  CAS  PubMed  Google Scholar 

  25. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    Article  CAS  PubMed  Google Scholar 

  26. Eiraku M, Sasai Y. Self-formation of layered neural structures in three-dimensional culture of ES cells. Curr Opin Neurobiol. 2012;22(5):768–77.

    Article  CAS  PubMed  Google Scholar 

  27. Fuhrmann S. Eye morphogenesis and patterning of the optic vesicle. Curr Top Dev Biol. 2010;93:61–84.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wilson SW, Wilson SW, Houart C, Houart C. Early steps in the development of the forebrain. Dev Cell. 2004;6(2):167–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fuhrmann S. Wnt signaling in eye organogenesis. Organogenesis. 2008;4(2):60–7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Graw J. Eye development. Curr Top Dev Biol. 2010;90:343–86.

    Article  PubMed  Google Scholar 

  31. Zuber ME. Eye field specification in Xenopus laevis. Curr Top Dev Biol. 2010;93:29–60.

    Article  PubMed  Google Scholar 

  32. Lamb TD, Collin SP, Pugh EN. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat Rev Neurosci. 2007;8(12):960–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nasonkin IO, Merbs SL, Lazo K, Oliver VF, Brooks M, Patel K, et al. Conditional knockdown of DNA methyltransferase 1 reveals a key role of retinal pigment epithelium integrity in photoreceptor outer segment morphogenesis. Development. 2013;140(6):1330–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85(3):845–81.

    Article  CAS  PubMed  Google Scholar 

  35. Norden C, Young S, Link BA, Harris WA. Actomyosin is the main driver of interkinetic nuclear migration in the retina. Cell. 2009;138(6):1195–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Del Bene F, Wehman AM, Link BA, Baier H. Regulation of neurogenesis by interkinetic nuclear migration through an apical-basal notch gradient. Cell. 2008;134(6):1055–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Strzyz PJ, Lee HO, Sidhaye J, Weber IP, Leung LC, Norden C. Interkinetic nuclear migration is centrosome independent and ensures apical cell division to maintain tissue integrity. Dev Cell. 2015;32(2):203–19.

    Article  CAS  PubMed  Google Scholar 

  38. Meyer JS, Howden SE, Wallace KA, Verhoeven AD, Wright LS, Capowski EE, et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells. 2011;29(8):1206–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mellough CB, Collin J, Khazim M, White K, Sernagor E, Steel DHW, et al. IGF-1 signaling plays an important role in the formation of three-dimensional laminated neural retina and other ocular structures from human embryonic stem cells. Stem Cells. 2015;33(8):2416–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Reichman S, Terray A, Slembrouck A, Nanteau C, Orieux G, Habeler W, et al. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc Natl Acad Sci. 2014;111(23):8518–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27(3):275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klimanskaya I, Rosenthal N, Lanza R. Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat Rev Drug Discov. 2008;7(2):131–42.

    Article  CAS  PubMed  Google Scholar 

  43. Lee KJ, Jessell TM. The specification of dorsal cell fates in the vertebrate central nervous system. Annu Rev Neurosci. 1999;22:261–94.

    Article  CAS  PubMed  Google Scholar 

  44. Levine AJ, Brivanlou AH. Proposal of a model of mammalian neural induction. Dev Biol. 2007;308(2):247–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fuhrmann S, Levine EM, Reh TA. Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development. 2000;127(21):4599–609.

    CAS  PubMed  Google Scholar 

  46. Raymond SM, Jackson IJ. The retinal pigmented epithelium is required for development and maintenance of the mouse neural retina. Curr Biol. 1995;5(11):1286–95.

    Article  CAS  PubMed  Google Scholar 

  47. Pinzón-Duarte G, Kohler K, Arango-González B, Guenther E. Cell differentiation, synaptogenesis, and influence of the retinal pigment epithelium in a rat neonatal organotypic retina culture. Vis Res. 2000;40(25):3455–65.

    Article  PubMed  Google Scholar 

  48. Bumsted KM, Rizzolo LJ, Barnstable CJ. Defects in the MITF(mi/mi) apical surface are associated with a failure of outer segment elongation. Exp Eye Res. 2001;73(3):383–92.

    Article  CAS  PubMed  Google Scholar 

  49. Jablonski MM, Tombran-Tink J, Mrazek DA, Iannaccone A. Pigment epithelium-derived factor supports normal development of photoreceptor neurons and opsin expression after retinal pigment epithelium removal. J Neurosci. 2000;20(19):7149–57.

    CAS  PubMed  Google Scholar 

  50. Sheedlo HJ, Nelson TH, Lin N, Rogers TA, Roque RS, Turner JE. RPE secreted proteins and antibody influence photoreceptor cell survival and maturation. Brain Res Dev Brain Res. 1998;107(1):57–69.

    Article  CAS  PubMed  Google Scholar 

  51. Fujimura N, Taketo MM, Mori M, Korinek V, Kozmik Z. Spatial and temporal regulation of Wnt/beta-catenin signaling is essential for development of the retinal pigment epithelium. Dev Biol. 2009;334(1):31–45.

    Article  CAS  PubMed  Google Scholar 

  52. Liu H, Mohamed O, Dufort D, Wallace VA. Characterization of Wnt signaling components and activation of the Wnt canonical pathway in the murine retina. Dev Dyn. 2003;227(3):323–34.

    Article  CAS  PubMed  Google Scholar 

  53. Westenskow P, Piccolo S, Fuhrmann S. Beta-catenin controls differentiation of the retinal pigment epithelium in the mouse optic cup by regulating Mitf and Otx2 expression. Development. 2009;136(15):2505–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eiraku M, Sasai Y. Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues. Nat Protoc. 2011;7(1):69–79.

    Article  PubMed  CAS  Google Scholar 

  55. Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 2010;10(9):1886–90.

    Article  CAS  PubMed  Google Scholar 

  56. Hoch RV, Rubenstein JLR, Pleasure S. Genes and signaling events that establish regional patterning of the mammalian forebrain. Semin Cell Dev Biol. 2009;20(4):378–86.

    Article  CAS  PubMed  Google Scholar 

  57. Furuta Y, Piston DW, Hogan BL. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development. 1997;124(11):2203–12.

    CAS  PubMed  Google Scholar 

  58. Pandit T, Jidigam VK, Patthey C, Gunhaga L. Neural retina identity is specified by lens-derived BMP signals. Development. 2015;142(10):1850–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bielen H, Houart C. BMP signaling protects telencephalic fate by repressing eye identity and its Cxcr4-dependent morphogenesis. Dev Cell. 2012;23(4):812–22.

    Article  CAS  PubMed  Google Scholar 

  60. Horsford DJ, Nguyen M-TT, Sellar GC, Kothary R, Arnheiter H, McInnes RR. Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity. Development. 2005;132(1):177–87.

    Article  CAS  PubMed  Google Scholar 

  61. Park CM, Hollenberg MJ. Basic fibroblast growth factor induces retinal regeneration in vivo. Dev Biol. 1989;134(1):201–5.

    Article  CAS  PubMed  Google Scholar 

  62. Martinez-Morales JR, Del Bene F, Nica G, Hammerschmidt M, Bovolenta P, Wittbrodt J. Differentiation of the vertebrate retina is coordinated by an FGF signaling center. Dev Cell. 2005;8(4):565–74.

    Article  CAS  PubMed  Google Scholar 

  63. Tanaka T, Yokoi T, Tamalu F, Watanabe S-I, Nishina S, Azuma N. Generation of retinal ganglion cells with functional axons from human induced pluripotent stem cells. Sci Rep. 2015;5:8344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cohen-Cory S, Escandón E, Fraser SE. The cellular patterns of BDNF and trkB expression suggest multiple roles for BDNF during Xenopus visual system development. Dev Biol. 1996;179(1):102–15.

    Article  CAS  PubMed  Google Scholar 

  65. Parrilla-Reverter G, Agudo M, Sobrado-Calvo P, Salinas-Navarro M, Villegas-PErez MP, Vidal-Sanz M. Effects of different neurotrophic factors on the survival of retinal ganglion cells after a complete intraorbital nerve crush injury: a quantitative in vivo study. Exp Eye Res. 2009;89(1):32–41.

    Article  CAS  PubMed  Google Scholar 

  66. Maekawa Y, Onishi A, Matsushita K, Koide N, Mandai M, Suzuma K, et al. Optimized culture system to induce neurite outgrowth from retinal ganglion cells in three-dimensional retinal aggregates differentiated from mouse and human embryonic stem cells. Curr Eye Res. 2016;41(4):558–68.

    CAS  PubMed  Google Scholar 

  67. Xu C-R, Li L-C, Donahue G, Ying L, Zhang Y-W, Gadue P, et al. Dynamics of genomic H3K27me3 domains and role of EZH2 during pancreatic endocrine specification. EMBO J. 2014;33(19):2157–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xie R, Everett LJ, Lim H-W, Patel NA, Schug J, Kroon E, et al. Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells. Cell Stem Cell. 2013;12(2):224–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Breslin S, O’Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today. 2013;18(5–6):240–9.

    Article  CAS  PubMed  Google Scholar 

  70. Schmeichel KL, Bissell MJ. Modeling tissue-specific signaling and organ function in three dimensions. J Cell Sci. 2003;116(Pt 12):2377–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mammoto A, Ingber DE. Cytoskeletal control of growth and cell fate switching. Curr Opin Cell Biol. 2009;21(6):864–70.

    Article  CAS  PubMed  Google Scholar 

  72. Baker BM, Chen CS. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125(Pt 13):3015–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014;345(6194):1247125.

    Article  PubMed  CAS  Google Scholar 

  74. Hynds RE, Giangreco A. Concise review: the relevance of human stem cell-derived organoid models for epithelial translational medicine. Stem Cells. 2013;31(3):417–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tucker BA, Park I-H, Qi SD, Klassen HJ, Jiang C, Yao J, et al. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS One. 2011;6(4):e18992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Paull D, Sevilla A, Zhou H, Hahn AK, Kim H, Napolitano C, et al. Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells. Nat Methods. 2015;12(9):885–92.

    Article  CAS  PubMed  Google Scholar 

  77. Kaewkhaw R, Kaya KD, Brooks M, Homma K, Zou J, Chaitankar V, et al. Transcriptome dynamics of developing photoreceptors in three-dimensional retina cultures recapitulates temporal sequence of human cone and rod differentiation revealing cell surface markers and gene networks. Stem Cells. 2015;33(12):3504–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, et al. Epigenetic memory in induced pluripotent stem cells. Nature. 2010;467(7313):285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ohi Y, Qin H, Hong C, Blouin L, Polo JM, Guo T, et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol. 2011;13(5):541–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hiler D, Chen X, Hazen J, Kupriyanov S, Carroll PA, Qu C, et al. Quantification of retinogenesis in 3D cultures reveals epigenetic memory and higher efficiency in iPSCs derived from rod photoreceptors. Cell Stem Cell. 2015;17(1):101–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol. 2010;28(8):848–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wutz A. Epigenetic alterations in human pluripotent stem cells: a tale of two cultures. Cell Stem Cell. 2012;11(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  83. Kim K, Zhao R, Doi A, Ng K, Unternaehrer J, Cahan P, et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat Biotechnol. 2011;29(12):1117–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bar-Nur O, Russ HA, Efrat S, Benvenisty N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell. 2011;9(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  85. Buganim Y, Markoulaki S, van Wietmarschen N, Hoke H, Wu T, Ganz K, et al. The developmental potential of iPSCs is greatly influenced by reprogramming factor selection. Cell Stem Cell. 2014;15(3):295–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wu T, Liu Y, Wen D, Tseng Z, Tahmasian M, Zhong M, et al. Histone variant H2A.X deposition pattern serves as a functional epigenetic mark for distinguishing the developmental potentials of iPSCs. Cell Stem Cell. 2014;15(3):281–94.

    Article  CAS  PubMed  Google Scholar 

  87. Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, et al. Derivation of novel human ground state naive pluripotent stem cells. Nature. 2013;504(7479):282–6.

    Article  CAS  PubMed  Google Scholar 

  88. Fonseca SAS, Costas RM, Pereira LV. Searching for naïve human pluripotent stem cells. World J Stem Cells. 2015;7(3):649–56.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Halfter W, Dong S, Schurer B, Ring C, Cole GJ, Eller A. Embryonic synthesis of the inner limiting membrane and vitreous body. Invest Ophthalmol Vis Sci. 2005;46(6):2202–9.

    Article  PubMed  Google Scholar 

  90. Halfter W, Dong S, Dong A, Eller AW, Nischt R. Origin and turnover of ECM proteins from the inner limiting membrane and vitreous body. Eye. 2008;22(10):1207–13.

    Article  CAS  PubMed  Google Scholar 

  91. Tao C, Zhang X. Development of astrocytes in the vertebrate eye. Dev Dyn. 2014;243(12):1501–10.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hughes S, Yang H, Chan-Ling T. Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis. Invest Ophthalmol Vis Sci. 2000;41(5):1217–28.

    CAS  PubMed  Google Scholar 

  93. Bähr M. Live or let die - retinal ganglion cell death and survival during development and in the lesioned adult CNS. Trends Neurosci. 2000;23(10):483–90.

    Article  PubMed  Google Scholar 

  94. MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, et al. Retinal repair by transplantation of photoreceptor precursors. Nature. 2006;444(7116):203–7.

    Article  CAS  PubMed  Google Scholar 

  95. Seiler MJ, Aramant RB. Cell replacement and visual restoration by retinal sheet transplants. Prog Retin Eye Res. 2012;31(6):661–87.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hertz J, Qu B, Hu Y, Patel RD, Valenzuela DA, Goldberg JL. Survival and integration of developing and progenitor-derived retinal ganglion cells following transplantation. Cell Transplant. 2014;23(7):855–72.

    Article  PubMed  Google Scholar 

  97. Andrabi M, Kuraku S, Takata N, Sasai Y, Love NR. Comparative, transcriptome analysis of self-organizing optic tissues. Sci Data. 2015;2:150030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. La Torre A, Hoshino A, Cavanaugh C, Ware CB, Reh TA. The GIPC1-Akt1 pathway is required for the specification of the eye field in mouse embryonic stem cells. Stem Cells. 2015;33(9):2674–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Abbott RD, Kaplan DL. Strategies for improving the physiological relevance of human engineered tissues. Trends Biotechnol. 2015;33(7):401–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stringari C, Cinquin A, Cinquin O, Digman MA, Donovan PJ, Gratton E. Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc Natl Acad Sci. 2011;108(33):13582–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ramsden CM, Powner MB, Carr A-JF, Smart MJK, da Cruz L, Coffey PJ. Stem cells in retinal regeneration: past, present and future. Development. 2013;140(12):2576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Stern JH, Temple S. Stem cells for retinal replacement therapy. Neurotherapeutics. 2011;8(4):736–43.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Tucker BA, Mullins RF, Stone EM. Stem cells for investigation and treatment of inherited retinal disease. Hum Mol Genet. 2014;23(R1):R9–R16.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Garcia JM, Mendonça L, Brant R, Abud M, Regatieri C, Diniz B. Stem cell therapy for retinal diseases. World J Stem Cells. 2015;7(1):160–4.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Al-Shamekh S, Goldberg JL. Retinal repair with induced pluripotent stem cells. Transl Res. 2014;163(4):377–86.

    Article  PubMed  Google Scholar 

  106. Sluch VM, Zack DJ. Stem cells, retinal ganglion cells and glaucoma. Dev Ophthalmol. 2014;53:111–21.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Cooke JA, Meyer JS. Human pluripotent stem cell-derived retinal ganglion cells: applications for the study and treatment of optic neuropathies. Curr Ophthalmol Rep. 2015;3(3):200–6.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Veleri S, Lazar CH, Chang B, Sieving PA, Banin E, Swaroop A. Biology and therapy of inherited retinal degenerative disease: insights from mouse models. Dis Model Mech. 2015;8(2):109–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Ambati J, Fowler BJ. Mechanisms of age-related macular degeneration. Neuron. 2012;75(1):26–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pearson RA, Hippert C, Graca AB, Barber AC. Photoreceptor replacement therapy: challenges presented by the diseased recipient retinal environment. Vis Neurosci. 2014;31(4–5):333–44.

    Article  PubMed  Google Scholar 

  111. Lakowski J, Baron M, Bainbridge J, Barber AC, Pearson RA, Ali RR, et al. Cone and rod photoreceptor transplantation in models of the childhood retinopathy Leber congenital amaurosis using flow-sorted Crx-positive donor cells. Hum Mol Genet. 2010;19(23):4545–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Santos-Ferreira T, Postel K, Stutzki H, Kurth T, Zeck G, Ader M. Daylight vision repair by cell transplantation. Stem Cells. 2015;33(1):79–90.

    Article  CAS  PubMed  Google Scholar 

  113. Pearson RA, Barber AC, Rizzi M, Hippert C, Xue T, West EL, et al. Restoration of vision after transplantation of photoreceptors. Nature. 2012;485(7396):99–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Singh MS, Charbel Issa P, Butler R, Martin C, Lipinski DM, Sekaran S, et al. Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation. Proc Natl Acad Sci. 2013;110(3):1101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Barber AC, Hippert C, Duran Y, West EL, Bainbridge JWB, Warre-Cornish K, et al. Repair of the degenerate retina by photoreceptor transplantation. Proc Natl Acad Sci. 2013;110(1):354–9.

    Article  CAS  PubMed  Google Scholar 

  116. Homma K, Okamoto S, Mandai M, Gotoh N, Rajasimha HK, Chang Y-S, et al. Developing rods transplanted into the degenerating retina of Crx-knockout mice exhibit neural activity similar to native photoreceptors. Stem Cells. 2013;31(6):1149–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. West EL, Pearson RA, Tschernutter M, Sowden JC, MacLaren RE, Ali RR. Pharmacological disruption of the outer limiting membrane leads to increased retinal integration of transplanted photoreceptor precursors. Exp Eye Res. 2008;86(4):601–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. West EL, Pearson RA, Barker SE, Luhmann UFO, MacLaren RE, Barber AC, et al. Long-term survival of photoreceptors transplanted into the adult murine neural retina requires immune modulation. Stem Cells. 2010;28(11):1997–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. West EL, Gonzalez-Cordero A, Hippert C, Osakada F, Martinez-Barbera JP, Pearson RA, et al. Defining the integration capacity of embryonic stem cell-derived photoreceptor precursors. Stem Cells. 2012;30(7):1424–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pearson RA, Barber AC, West EL, MacLaren RE, Duran Y, Bainbridge JW, et al. Targeted disruption of outer limiting membrane junctional proteins (Crb1 and ZO-1) increases integration of transplanted photoreceptor precursors into the adult wild-type and degenerating retina. Cell Transplant. 2010;19(4):487–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pearson RA. Advances in repairing the degenerate retina by rod photoreceptor transplantation. Biotechnol Adv. 2014;32(2):485–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Warre-Cornish K, Barber AC, Sowden JC, Ali RR, Pearson RA. Migration, integration and maturation of photoreceptor precursors following transplantation in the mouse retina. Stem Cells Dev. 2014;23(9):941–54.

    Article  CAS  PubMed  Google Scholar 

  123. Gonzalez-Cordero A, West EL, Pearson RA, Duran Y, Carvalho LS, Chu CJ, et al. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol. 2013;31(8):741–7.

    Article  CAS  PubMed  Google Scholar 

  124. Lamba DA, Gust J, Reh TA. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell. 2009;4(1):73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lamba DA, McUsic A, Hirata RK, Wang P-R, Russell D, Reh TA. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One. 2010;5(1):e8763.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Woch G, Aramant RB, Seiler MJ, Sagdullaev BT, McCall MA. Retinal transplants restore visually evoked responses in rats with photoreceptor degeneration. Invest Ophthalmol Vis Sci. 2001;42(7):1669–76.

    CAS  PubMed  Google Scholar 

  127. Sagdullaev BT, Aramant RB, Seiler MJ, Seiler MJ, et al. Retinal transplantation-induced recovery of retinotectal visual function in a rodent model of retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2003;44(4):1686–95.

    Article  PubMed  Google Scholar 

  128. Thomas BB, Seiler MJ, Sadda SR, Coffey PJ, Aramant RB. Optokinetic test to evaluate visual acuity of each eye independently. J Neurosci Methods. 2004;138(1–2):7–13.

    Article  PubMed  Google Scholar 

  129. Seiler MJ, Thomas BB, Chen Z, Arai S, Chadalavada S, Mahoney MJ, et al. BDNF-treated retinal progenitor sheets transplanted to degenerate rats: improved restoration of visual function. Exp Eye Res. 2008;86(1):92–104.

    Article  CAS  PubMed  Google Scholar 

  130. Seiler MJ, Sagdullaev BT, Woch G, Thomas BB, Aramant RB. Transsynaptic virus tracing from host brain to subretinal transplants. Eur J Neurosci. 2005;21(1):161–72.

    Article  PubMed  Google Scholar 

  131. Seiler MJ, Rao B, Aramant RB, Yu L, Wang Q, Kitayama E, et al. Three-dimensional optical coherence tomography imaging of retinal sheet implants in live rats. J Neurosci Methods. 2010;188(2):250–7.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Seiler MJ, Aramant RB. Intact sheets of fetal retina transplanted to restore damaged rat retinas. Invest Ophthalmol Vis Sci. 1998;39(11):2121–31.

    CAS  PubMed  Google Scholar 

  133. Aramant RB, Seiler MJ, Ball SL. Successful cotransplantation of intact sheets of fetal retina with retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1999;40(7):1557–64.

    CAS  PubMed  Google Scholar 

  134. Aramant RB, Seiler MJ. Fiber and synaptic connections between embryonic retinal transplants and host retina. Exp Neurol. 1995;133:1–12.

    Article  Google Scholar 

  135. Seiler MJ, Aramant RB. Transplantation of neuroblastic progenitor cells as a sheet preserves and restores retinal function. Semin Ophthalmol. 2005;20(1):31–42.

    Article  PubMed  Google Scholar 

  136. Seiler MJ, Aramant RB, Thomas BB, Peng Q, Sadda SR, Keirstead HS. Visual restoration and transplant connectivity in degenerate rats implanted with retinal progenitor sheets. Eur J Neurosci. 2010;31(3):508–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Seiler MJ, Jones BW, Aramant RB, Yang PB, Keirstead HS, Marc RE. Computational molecular phenotyping of retinal sheet transplants to rats with retinal degeneration. Eur J Neurosci. 2012;35(11):1692–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Aramant RB, Seiler MJ. Transplanted sheets of human retina and retinal pigment epithelium develop normally in nude rats. Exp Eye Res. 2002;75(2):115–25.

    Article  CAS  PubMed  Google Scholar 

  139. Peng Q, Thomas BB, Aramant RB, Chen Z, Sadda SR, Seiler MJ. Structure and function of embryonic rat retinal sheet transplants. Curr Eye Res. 2007;32(9):781–9.

    Article  PubMed  Google Scholar 

  140. Yang PB, Seiler MJ, Aramant RB, Yan F, Mahoney MJ, Kitzes LM, et al. Trophic factors GDNF and BDNF improve function of retinal sheet transplants. Exp Eye Res. 2010;91(5):727–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Seiler MJ, Aramant RB, Ball SL. Photoreceptor function of retinal transplants implicated by light-dark shift of S-antigen and rod transducin. Vis Res. 1999;39(15):2589–96.

    Article  CAS  PubMed  Google Scholar 

  142. Seiler MJ, Thomas BB, Chen Z, Wu R, Sadda SR, Aramant RB. Retinal transplants restore visual responses: trans-synaptic tracing from visually responsive sites labels transplant neurons. Eur J Neurosci. 2008;28(1):208–20.

    Article  PubMed  Google Scholar 

  143. Thomas BB, Seiler MJ, Sadda SR, Aramant RB. Superior colliculus responses to light - preserved by transplantation in a slow degeneration rat model. Exp Eye Res. 2004;79(1):29–39.

    Article  CAS  PubMed  Google Scholar 

  144. Radtke ND, Aramant RB, Petry HM, Green PT, Pidwell DJ, Seiler MJ. Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. Am J Ophthalmol. 2008;146(2):172–82.

    Article  PubMed  Google Scholar 

  145. Hendrickson A, Bumsted-O’Brien K, Natoli R, Ramamurthy V, Possin D, Provis J. Rod photoreceptor differentiation in fetal and infant human retina. Exp Eye Res. 2008;87(5):415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. O’Brien KMB, Schulte D, Hendrickson AE. Expression of photoreceptor-associated molecules during human fetal eye development. Mol Vis. 2003;9:401–9.

    PubMed  Google Scholar 

  147. Assawachananont J, Mandai M, Okamoto S, Yamada C, Eiraku M, Yonemura S, et al. Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Reports. 2014;2(5):662–74.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Shirai H, Mandai M, Matsushita K, Kuwahara A, Yonemura S, Nakano T, et al. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc Natl Acad Sci. 2016;113(1):E81–90.

    Article  CAS  PubMed  Google Scholar 

  149. Gamm DM, Wong R, and the AGI Workshop Panelists. Report on the National Eye Institute Audacious Goals Initiative: Photoreceptor Regeneration and Integration Workshop. Transl Vis Sci Technol. 2015;4(6):2.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Nazari H, Zhang L, Zhu D, Chader GJ, Falabella P, Stefanini F, et al. Stem cell based therapies for age-related macular degeneration: the promises and the challenges. Prog Retin Eye Res. 2015;48:1–39.

    Article  CAS  PubMed  Google Scholar 

  151. Kador KE, Alsehli HS, Zindell AN, Lau LW, Andreopoulos FM, Watson BD, et al. Retinal ganglion cell polarization using immobilized guidance cues on a tissue-engineered scaffold. Acta Biomater. 2014;10(12):4939–46.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Gill KP, Hewitt AW, Davidson KC, Pébay A, Wong RCB. Methods of retinal ganglion cell differentiation from pluripotent stem cells. Transl Vis Sci Technol. 2014;3(4):7.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Barres BA, Silverstein BE, Corey DP, Chun LL. Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron. 1988;1(9):791–803.

    Article  CAS  PubMed  Google Scholar 

  154. Sanes JR, Masland RH. The types of retinal ganglion cells: current status and implications for neuronal classification. Annu Rev Neurosci. 2015;38:221–46.

    Article  CAS  PubMed  Google Scholar 

  155. Masland RH. The fundamental plan of the retina. Nat Neurosci. 2001;4(9):877–86.

    Article  CAS  PubMed  Google Scholar 

  156. Jones BW, Marc RE. Retinal remodeling during retinal degeneration. Exp Eye Res. 2005;81(2):123–37.

    Article  CAS  PubMed  Google Scholar 

  157. Smith C, Abalde-Atristain L, He C, Brodsky BR, Braunstein EM, Chaudhari P, et al. Efficient and allele-specific genome editing of disease loci in human iPSCs. Mol Ther. 2015;23(3):570–7.

    Article  CAS  PubMed  Google Scholar 

  158. Zhu Z, González F, Huangfu D. The iCRISPR platform for rapid genome editing in human pluripotent stem cells. Methods Enzymol. 2014;546:215–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Blasco RB, Karaca E, Ambrogio C, Cheong T-C, Karayol E, Minero VG, et al. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep. 2014;9(4):1219–27.

    Article  CAS  PubMed  Google Scholar 

  160. González F, Zhu Z, Shi Z-D, Lelli K, Verma N, Li QV, et al. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell. 2014;15(2):215–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Cameron DE, Bashor CJ, Collins JJ. A brief history of synthetic biology. Nat Rev Microbiol. 2014;12(5):381–90.

    Article  CAS  PubMed  Google Scholar 

  162. König H, König H, Frank D, Frank D, Heil R, Heil R, et al. Synthetic genomics and synthetic biology applications between hopes and concerns. Curr Genomics. 2013;14(1):11–24.

    PubMed  PubMed Central  Google Scholar 

  163. Wang Y-H, Wei KY, Smolke CD. Synthetic biology: advancing the design of diverse genetic systems. Annu Rev Chem Biomol Eng. 2013;4:69–102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Ruder WC, Lu T, Collins JJ. Synthetic biology moving into the clinic. Science. 2011;333(6047):1248–52.

    Article  CAS  PubMed  Google Scholar 

  165. Ibsen S, Tong A, Schutt C, Esener S, Chalasani SH. Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat Commun. 2015;6:8264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Sun Y, Williams A, Waisbourd M, Iacovitti L, Katz LJ. Stem cell therapy for glaucoma: science or snake oil? Surv Ophthalmol. 2015;60(2):93–105.

    Article  PubMed  Google Scholar 

  167. Bardy C, van den Hurk M, Eames T, Marchand C, Hernandez RV, Kellogg M, et al. Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro. Proc Natl Acad Sci. 2015;112(20):E2725–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32(8):760–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the generous support of the A.B. Reins Foundation, the Neonatal Blindness Research Fund, the Larry and Celia Moh Foundation, Research to Prevent Blindness, NIH National Eye Institute grant R21EY025419 (JGA & DC), and NIH grant T32HD060549 to the USC Keck School of Medicine Development, Stem Cells, and Regenerative Medicine Program (DWHS) during the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer G. Aparicio Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Aparicio, J.G., Shayler, D.W.H., Cobrinik, D. (2017). Retinal Organoids: An Emerging Technology for Retinal Disease Research and Therapy. In: Schwartz, S., Nagiel, A., Lanza, R. (eds) Cellular Therapies for Retinal Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-49479-1_10

Download citation

Publish with us

Policies and ethics