Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Since the early 1970s, basin and petroleum system modeling (GlossaryTerm

BPSM

) has evolved from a simple tool, used mainly to predict regional source rock thermal maturity, to become a critical component in the worldwide exploration programs of many national and international oil companies for both conventional and unconventional resources. The selection of one-dimensional GlossaryTerm

1-D

, GlossaryTerm

2-D

or GlossaryTerm

3-D

BPSM depends on available input data and project objectives. Organic richness and rock properties must be reconstructed to original values prior to burial. For example, in geohistory analysis each unit is decompacted to original thickness and corrected for paleobathymetry and eustasy. Boundary conditions for thermal evolution include heat flow and sediment-water interface temperature corrected for water depth through time. Default petroleum generation kinetics available in most software should be used only when suitable samples of the source rock organofacies are unavailable. Kinetic parameters are best measured using representative, thermally immature equivalents of the effective source rock. 3-D poroelastic and poroplastic rock stress modeling are significant advances over the 1-D Terzaghi method employed by most software. Calibration should start with the available pressure data, followed by thermal calibration (e. g., corrected borehole temperatures or vitrinite reflectance) and calibration to other measurements (e. g., petroleum composition). The dynamic petroleum system concept has proven to be a more reliable tool for exploration than static play fairway maps used in the past, partly because BPSM accounts for the timing of trap formation relative to generation-migration-accumulation. Tectonic activity and other processes can result in remigration or destruction of accumulations and more than one critical moment on the petroleum system event chart. Organoporosity within the kerogen and solid bitumen accounts for much of the petroleum in unconventional mudstone reservoirs, and secondary cracking of oil to gas is particularly important. Hybrid unconventional systems, which juxtapose ductile organic-rich and brittle, more permeable organic-lean intervals are typically the best producers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Hantschel, A.I. Kauerauf: Fundamentals of Basin and Petroleum Systems Modeling (Springer, Berlin 2009) p. 476

    Google Scholar 

  2. M.M. Al-Hajeri, T. Fuchs, T. Hantschel, A. Kauerauf, M. Neumaier, O. Schenk, O. Swientek, N. Tessen, D. Welte, B. Wygrala, D. Kornpihl, K. Peters: Basin and petroleum system modeling, Oilfield Rev. 21, 14–29 (2009)

    CAS  Google Scholar 

  3. K.E. Peters, D.J. Curry, M. Kacewicz: An overview of basin and petroleum system modeling. In: Definitions and Concepts, Basin Modeling: New Horizons in Research and Applications, American Association of Petroleum Geologists Hedberg, ed. by K.E. Peters, D. Curry, M. Kacewicz (AAPG, Tulsa 2012) pp. 1–16

    Google Scholar 

  4. K.E. Peters, L.B. Magoon, C. Lampe, A. Hosford Scheirer, P.G. Lillis, D.L. Gautier: A four-dimensional petroleum systems model for the San Joaquin Basin, California. In: Petroleum Systems and Geologic Assessment of Oil and Gas in the San Joaquin Basin Province, California, ed. by A. Hosford Scheirer (USGS, Washington 2007) p. 35, US Geological Survey Professional Paper 1713, http://pubs.usgs.gov/pp/pp1713/

  5. L.B. Magoon, W.G. Dow: The Petroleum System – From Source to Trap, American Association of Petroleum Geologists Memoir, Vol. 60 (AAPG, Tulsa 1994) p. 655

    Google Scholar 

  6. K.E. Peters, O. Schenk, B. Wygrala: Exploration paradigm shift: The dynamic petroleum system concept, Swiss Bull. Appl. Geol. 14, 65–71 (2009)

    Google Scholar 

  7. K.E. Peters, T. Hantschel, A.I. Kauerauf, Y. Tang, B. Wygrala: Recent advances in petroleum system modeling of geochemical processes: TSR, SARA and biodegradation, Proc. Annu. Meet. (2013) p. 41261

    Google Scholar 

  8. B. Wygrala, O. Schenk, K.E. Peters: Assessment and exploration risking workflows for conventional and unconventional Arctic resources: Applications on the Alaska North Slope, Lead. Edge 32, 564–572 (2013)

    Article  Google Scholar 

  9. D.H. Welte, B. Horsfield, D.R. Baker: Petroleum and Basin Evolution (Springer, Berlin 1997) p. 535

    Book  Google Scholar 

  10. C.L. Angevine, P.L. Heller, C. Paola: Quantitative Sedimentary Basin Modeling, American Association of Petroleum Geologists Continuing Education Course Note (AAPG, Tulsa 1990) p. 133

    Google Scholar 

  11. P.A. Allen, J.R. Allen: Basin Analysis: Principles and Applications, 2nd edn. (Blackwell Publishing, Malden 2005) p. 549

    Google Scholar 

  12. K. Stuewe: Geodynamics of the Lithosphere, 2nd edn. (Springer, Berlin 2007) p. 493

    Google Scholar 

  13. B. Parsons, J.G. Sclater: An analysis of the variation of ocean floor bathymetry and heat flow with age, J. Geophys. Res. 82, 803–827 (1977)

    Article  Google Scholar 

  14. W.R. Dickinson: Plate tectonics and sedimentation. In: Tectonics and Sedimentation, Society of Economic Paleontologists and Mineralogists Special Publication, Vol. 22, ed. by W.R. Dickinson (SEPM, Tulsa 1974) pp. 1–27

    Google Scholar 

  15. H.G. Reading: Sedimentary basins and global tectonics, Proc. Geol. Assoc. 93, 321–350 (1982)

    Article  Google Scholar 

  16. K.E. Peters, P.H. Nelson: Criteria to determine borehole formation temperatures for calibration of basin and petroleum system models. In: Analyzing the Thermal History of Sedimentary Basins: Methods and Case Studies, SEPM Special Publication, Vol. 103, ed. by N.B. Harris, K.E. Peters (SEPM, Tulsa 2009) pp. 5–15

    Google Scholar 

  17. G.R. Beardsmore, J.P. Cull: Crustal Heat Flow (Cambridge Univ. Press, New York 2001) p. 324

    Book  Google Scholar 

  18. D.K. Higley, M. Lewan, L.N.R. Roberts, M. Henry: Petroleum System Modeling Capabilities for Use in Oil and Gas Resource Assessments, US Geological Survey Open-File Report (USGS, Washington 2006) p. 18

    Google Scholar 

  19. M. He, S. Graham, A. Hosford Scheirer, K.E. Peters: A basin modeling and organic geochemistry study in the Vallecitos syncline, San Joaquin Basin, California, Mar. Petroleum Geol. 49, 15–34 (2014)

    Article  CAS  Google Scholar 

  20. B.P. Wygrala: Integrated Study of an Oil Field in the Southern Po Basin, Northern Italy, Berichte Kernforschungsanlage Juelich, Vol. 2313 (FZ Jülich, Jülich 1989) p. 217

    Google Scholar 

  21. R. di Primio, B. Horsfield: From petroleum-type organofacies to hydrocarbon phase prediction, AAPG Bulletin 90, 1031–1058 (2006)

    Article  Google Scholar 

  22. N.B. Schoellkopf: Quantitative assessment of hydrocarbon charge risk in new ventures: Are we fooling ourselves? In: Basin Modeling: New Horizons in Research and Applications, American Association of Petroleum Geologists Hedberg, ed. by K.E. Peters, D.J. Curry, M. Kacewicz (AAPG, Tulsa 2012) pp. 237–246

    Google Scholar 

  23. R.E. Swarbrick, M.J. Osborne, G.S. Yardley: Comparison of Overpressure Magnitude Resulting from the Main Generating Mechanisms, American Association of Petroleum Geologists Memoir, Vol. 76 (AAPG, Tulsa 2002) pp. 1–12

    Google Scholar 

  24. M.A. Biot: General theory of three-dimensional consolidation, J. Appl. Phys. 12, 155–164 (1941)

    Article  Google Scholar 

  25. K. Terzaghi: Die Berechnung der Durchlässigkeitsziffer des Tones im Verlauf der hydrodynamischen Spannungerscheinungen, Sitz-Ber. Akad. Wiss. Vienna Math.-Naturwiss. Kl. IIa 132, 125–138 (1923)

    Google Scholar 

  26. H.S. Poelchau, D.R. Baker, T. Hantschel, B. Horsfield, B. Wygrala: Basin simulation and the design of the conceptual basin model. In: Petroleum and Basin Evolution, ed. by D.H. Welte, B. Horsfield, D.R. Baker (Springer, Berlin 1997) pp. 5–70

    Google Scholar 

  27. J.G. Sclater, P.A.F. Christie: Continental stretching: An explanation of the post Mid-Cretaceous subsidence of Central North Sea Basin, J. Geophys. Res. 85, 3711–3739 (1980)

    Article  Google Scholar 

  28. D. Falvey, M. Middleton: Passive continental margins: Evidence for a pre-breakup, deep crustal metamorphic subsidence mechanism, Oceanol. Acta 4, 103–114 (1981)

    Google Scholar 

  29. B. Baldwin, C.O. Butler: Compaction curves, AAPG Bulletin 69, 622–626 (1985)

    Google Scholar 

  30. F. Schneider, J.L. Potdevin, S. Wolf, I. Faille: Mechanical and chemical compaction model for sedimentary basin simulators, Tectonophysics 263, 307–313 (1996)

    Article  CAS  Google Scholar 

  31. O. Walderhaug: Modelign quartz cementation and porosity in Middle Jurassic Brent Group sandstones of the Kvitenbjoern field, northern North Sea, AAPG Bulletin 84, 1325–1339 (2000)

    Google Scholar 

  32. D. Croizé, K. Bjørlykke, J. Jahren, F. Renard: Experimental mechanical and chemical compaction of carbonate sand, J. Geophys. Res. 115, B11204 (2010)

    Article  Google Scholar 

  33. J.R. Allwardt, G.E. Michael, C.R. Shearer, P.D. Heppard, H. Ge: 2-D modeling of overpressure in a salt withdrawal basin, Gulf of Mexico, USA, Mar. Petroleum Geol. 26, 464–473 (2009)

    Article  Google Scholar 

  34. J.E. Van Hinte: Geohistory analysis-application of micropaleontology in exploration geology, AAPG Bulletin 62, 201–222 (1978)

    Google Scholar 

  35. J.R. Dodd, R.J. Stanton: Paleoecology, Concepts and Applications (Wiley, New York 1981) p. 559

    Google Scholar 

  36. J.W. Morse, F.T. Mackenzie: Geochemistry of Sedimentary Carbonates (Elsevier, Amsterdam 1990) p. 707

    Google Scholar 

  37. F. Schneider: Understanding the diagenetic evolution of potential reservoirs in fold/thrust belts: An example from eastern Venezuela, Petroleum Geology: North-West Europe and Global Perspectives – Proc. 6th Petroleum Geol. Conf.: Petroleum Geol. Conf. Ltd, ed. by A.G. Dore, B.A. Vining (Geological Society, London 2005) pp. 1359–1366

    Chapter  Google Scholar 

  38. F. Baur, M. Di Benedetto, T. Fuchs, C. Lampe, S. Sciamanna: Integrating structural geology and petroleum systems modeling – A pilot project from Bolivia’s fold and thrust belt, Mar. Petroleum Geol. 26, 573–579 (2009)

    Article  Google Scholar 

  39. M. Neumaier, R. Littke, T. Hantschel, L. Maerten, J.-P. Joonnekindt, P. Kukla: Integrated charge and seal assessment in the Monagas fold and thrust belt of Venezuela, AAPG Bulletin 98, 1325–1350 (2014)

    Article  CAS  Google Scholar 

  40. T. Menotti: Petroleum System Evolution, Strike-Slip Tectonism, and Diagenesis of the Monterey Formation in the Salinas Basin, California, Ph.D. Thesis (Geological and Environmental Sciences Department, Stanford Univ., Stanford 2014)

    Google Scholar 

  41. R. Gibson: A methodology to incorporate dynamic salt evolution in three-dimensional basin models: Application to regional modeling of the Gulf of Mexico. In: Basin Modeling: New Horizons in Research and Applications, American Association of Petroleum Geologists Hedberg, ed. by K.E. Peters, D.J. Curry, M. Kacewicz (AAPG, Tulsa 2012) pp. 103–118

    Google Scholar 

  42. K.E. Peters, C.C. Walters, J.M. Moldowan: The Biomarker Guide (Cambridge Univ. Press, Cambridge 2005) p. 1155

    Google Scholar 

  43. D. McKenzie: Some remarks on the development of sedimentary basins, Earth Planet. Sci. Lett. 40, 25–32 (1978)

    Article  Google Scholar 

  44. B.P. Tissot, D.H. Welte: Petroleum Formation and Occurrence (Springer, Berlin 1984) p. 699

    Book  Google Scholar 

  45. T.S. Ahlbrandt, R.R. Charpentier, T.R. Klett, J.W. Schmoker, C.J. Schenk, G.F. Ulmishek: Global Resource Estimates from Total Petroleum Systems, American Association of Petroleum Geologists Memoir, Vol. 86 (AAPG, Tulsa 2005) p. 324

    Google Scholar 

  46. A. Hood, C.C.M. Gutjahr, R.L. Heacock: Organic metamorphism and the generation of petroleum, AAPG Bulletin 59, 986–996 (1975)

    Google Scholar 

  47. D.D. Rice, G.E. Claypool: Generation, accumulation and resource potential of biogenic gas, AAPG Bulletin 65, 5–25 (1981)

    CAS  Google Scholar 

  48. K. Wiese, K.A. Kvenvolden: Introduction to microbial and thermal methane. In: The Future of Energy Gases, US Geological Survey Professional, ed. by D.G. Howell (Reston, Virginia 1993) pp. 13–20

    Google Scholar 

  49. A.V. Milkov: Methanogenic biodegradation of petroleum in the West Siberian Basin (Russia): Significance for formation of giant Cenomanian gas pools, AAPG Bulletin 94, 1485–1541 (2010)

    Article  CAS  Google Scholar 

  50. M.J. Whiticar: Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane, Chem. Geol. 161, 291–314 (1999)

    Article  CAS  Google Scholar 

  51. M. Schoell, P.D. Jenden, M.A. Beeunas, D.D. Coleman: Isotope analyses of gases in gas field and gas storage operations, Soc. Petroleum Eng. 26171, 337–344 (1993)

    Google Scholar 

  52. D.M. Jones, I.M. Head, N.D. Gray, J.J. Adams, A.K. Rowan, C.M. Aitken, B. Bennett, H. Huang, A. Brown, B.F. Bowler, T. Oldenburg, M. Erdmann, S.R. Larter: Crude oil biodegradation via methanogenesis in subsurface petroleum reservoirs, Nature 451, 176–180 (2008)

    Article  CAS  Google Scholar 

  53. A. Wilhelms, S.R. Larter, I. Head, P. Farrimond, R. di Primio, C. Zwach: Biodegradation of oil in uplifted basins prevented by deep-burial sterilization, Nature 411, 1034–1037 (2001)

    Article  CAS  Google Scholar 

  54. A.S. Mackenzie, T.M. Quigley: Principles of geochemical prospect appraisal, AAPG Bulletin 72, 399–415 (1988)

    CAS  Google Scholar 

  55. H. Tian, Z. Wang, Z. Xiao, X. Li, X. Xiao: Oil cracking to gases: Kinetic modeling and geological significance, Chin. Sci. Bull. 51, 2763–2770 (2006)

    Article  CAS  Google Scholar 

  56. J.J. Sweeney, A.K. Burnham: Evaluation of a simple model of vitrinite reflectance based on chemical kinetics, AAPG Bulletin 74, 1559–1570 (2006)

    Google Scholar 

  57. D.W. Waples, R.W. Marzi: The universality of the relationship between vitrinite reflectance and transformation ratio, Org. Geochem. 28, 383–388 (1998)

    Article  CAS  Google Scholar 

  58. J. Connan: Time-temperature relation in oil genesis, AAPG Bulletin 58, 2516–2521 (1974)

    Google Scholar 

  59. M.A. Abu-Ali, J.G. Rudkiewicz, J.G. McGillivray, F. Behar: Paleozoic petroleum system of central Saudi Arabia, GeoArabia 4, 321–336 (1999)

    Google Scholar 

  60. A.K. Burnham, R.L. Braun: Global kinetic analysis of complex materials, Energy Fuels 13, 1–22 (1999)

    Article  CAS  Google Scholar 

  61. K.E. Peters, C.C. Walters, P.J. Mankiewicz: Evaluation of kinetic uncertainty in numerical models of petroleum generation, AAPG Bulletin 90, 1–19 (2006)

    Article  Google Scholar 

  62. B. Horsfield, U. Disko, F. Leistner: The micro-scale simulation of maturation: Outline of a new technique and its potential applications, Geol. Rundsch. 78, 361–373 (1989)

    Article  CAS  Google Scholar 

  63. F. Behar, S. Kressman, J.L. Rudkiewicz, M. Vandenbroucke: Experimental simulation in a confined system and kinetic modeling of kerogen and oil cracking, Org. Geochem. 19, 173–189 (1992)

    Article  CAS  Google Scholar 

  64. M.D. Lewan, J.C. Winters, J.H. McDonald: Generation of oil-like pyrolyzates from organic-rich shales, Science 203, 897–899 (1979)

    Article  CAS  Google Scholar 

  65. M.D. Lewan, T.E. Ruble: Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis, Org. Geochem. 33, 1457–1475 (2002)

    Article  CAS  Google Scholar 

  66. R.L. Braun, A.K. Burnham: Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models, Energy Fuels 1, 153–161 (1987)

    Article  CAS  Google Scholar 

  67. A.K. Burnham, R.L. Braun, H.R. Gregg, A.M. Samoun: Comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters, Energy Fuels 1, 452–458 (1987)

    Article  CAS  Google Scholar 

  68. P. Sundararaman, P.H. Merz, R.G. Mann: Determination of kerogen activation energy distribution, Energy Fuels 6, 793–803 (1992)

    Article  CAS  Google Scholar 

  69. H.J. Schenk, B. Horsfield: Kinetics of petroleum generation from open versus closed system pyrolysis experiments, Geochim. Cosmochim. Acta 57, 623–630 (1993)

    Article  CAS  Google Scholar 

  70. U. Ritter, M.B. Myhr, T. Vinge, K. Aareskjold: Experimental heating and kinetic models of source rocks: Comparison of different methods, Org. Geochem. 23, 1–9 (1995)

    Article  CAS  Google Scholar 

  71. T. Barth, B.J. Smith, S.B. Nielsen: Do kinetic parameters from open pyrolysis describe petroleum generation by simulated maturation?, Bull. Can. Petroleum Geol. 44, 446–457 (1996)

    Google Scholar 

  72. J.G. Stainforth: Practical kinetic modeling of petroleum generation and expulsion, Mar. Petroleum Geol. 26, 552–572 (2009)

    Article  CAS  Google Scholar 

  73. D.W. Waples, V.S. Nowaczewski: Source-Rock Kinetics (2013) https://siriusdummy.files.wordpress.com/2013/11/perspective-on-sr-kinetics-ss.pdf

  74. K.E. Peters, A.K. Burnham, C.C. Walters: Petroleum generation kinetics: Single-versus multiple heating-ramp open-system pyrolysis, AAPG Bulletin 99, 591–616 (2015)

    Article  Google Scholar 

  75. R.L. Braun, A.K. Burnham, J.G. Reynolds, J.E. Clarkson: Pyrolysis kinetics for lacustrine and marine source rocks by programmed pyrolysis, Energy Fuels 5, 192–204 (1991)

    Article  CAS  Google Scholar 

  76. H.J. Schenk, B. Horsfield: Using natural maturation series to evaluate the utility of parallel reaction kinetics models: An investigation of Toarcian shales and Carboniferous coals, Org. Geochem. 29, 137–154 (1998)

    Article  CAS  Google Scholar 

  77. A.K. Burnham, R.L. Braun, T.T. Coburn, E.I. Sandvik, D.J. Curry, B.J. Schmidt, R.A. Noble: An appropriate kinetic model for well-preserved algal kerogens, Energy Fuels 10, 49–59 (1996)

    Article  CAS  Google Scholar 

  78. S.R. Kelemen, C.C. Walters, D. Ertas, H. Freund, D.J. Curry: Petroleum expulsion. Part 3. A model of chemically driven fractionation of petroleum from kerogen, Energy Fuels 20, 309–319 (2006)

    Article  CAS  Google Scholar 

  79. W.A. England, A.S. Mackenzie, D.M. Mann, T.M. Quigley, D. Robinson: The movement and entrapment of petroleum fluids in the subsurface, J. Geol. Soc. 144, 327–347 (1987)

    Article  CAS  Google Scholar 

  80. T. Hantschel, A.I. Kauerauf, B. Wygrala: Finite element analysis and ray tracing modeling of petroleum migration, Mar. Petroleum Geol. 17, 815–820 (2000)

    Article  CAS  Google Scholar 

  81. D.H. Welte, T. Hantschel, B.P. Wygrala, K.S. Weissenburger, D.J. Carruthers: Aspects of petroleum migration modelling, J. Geochem. Explor. 69–70, 711–714 (2000)

    Article  Google Scholar 

  82. D.J. Carruthers: Modeling of secondary petroleum migration using invasion percolation techniques. In: Multidimensional Basin Modeling, American Association of Petroleum Geologists Datapages Discovery, Vol. 7, ed. by S.J. Düppenbecker, R. Marzi (AAPG, Tulsa 2003) pp. 21–37

    Google Scholar 

  83. D. Wilkinson, J.F. Willemsen: Invasion percolation: A new form of percolation theory, J. Phys. A: Math. Gen. 16, 3365–3376 (1983)

    Article  Google Scholar 

  84. S.M. Clarke, S.D. Burley, G.D. Williams, A.J. Richards, D.J. Meredith, S.S. Egan: Integrated four-dimensional modelling of sedimentary basin architecture and hydrocarbon migration. In: Analogue and Numerical Modeling of Crustal-Scale Processesed, Vol. 253, ed. by S.J.H. Buiter, G. Schreurs (Geological Society, Special Publications, London 2006) pp. 185–211

    Google Scholar 

  85. X. Luo: Simulation and characterization of pathway heterogeneity of secondary hydrocarbon migration, AAPG Bulletin 95, 881–898 (2011)

    Article  CAS  Google Scholar 

  86. A. Vayssaire: Simulation of petroleum migration in fine-grained rock by upscaling relative permeability curves: The Malvinas Basin, offshore Argentina. In: Basin Modeling: New Horizons in Research and Applications, American Association of Petroleum Geologists Hedberg, Vol. 4, ed. by K.E. Peters, D.J. Curry, M. Kacewicz (AAPG, Tulsa 2012) pp. 247–257

    Google Scholar 

  87. J.J. Hohler, W.E. Bischoff Alaska: Potential for giant fields. In: Future Petroleum Provinces of the World, American Association of Petroleum Geologists Memoir, Vol. 40, ed. by M.T. Halbouty (AAPG, Tulsa 1986) pp. 131–142

    Google Scholar 

  88. US Geological Survey: Circum-Arctic resource appraisal: Estimates of undiscovered oil and gas north of the Arctic Circle: US Geological Survey Fact Sheet 2008–3049 (2008) http://pubs.usgs.gov/fs/2008/3049/fs2008-3049.pdf

  89. O. Schenk, K.J. Bird, L.B. Magoon, K.E. Peters: Petroleum system modeling of Northern Alaska. In: Basin Modeling: New Horizons in Research and Applications, American Association of Petroleum Geologists Hedberg, Vol. 4, ed. by K.E. Peters, D. Curry, M. Kacewicz (AAPG, Tulsa 2012) pp. 317–338

    Google Scholar 

  90. K.E. Peters, L.S. Ramos, J.S. Zumberge, Z.C. Valin, K.J. Bird: De-convoluting mixed crude oil in Prudhoe Bay Field, North Slope, Alaska, Org. Geochem. 39, 623–645 (2008)

    Article  CAS  Google Scholar 

  91. J.G. Gluyas, R. Swarbrick: Petroleum Geoscience (Blackwell Publishing, Hoboken 2004) p. 359

    Google Scholar 

  92. L.I. Dzou: Kuparuk oil field, Alaska, a mixture of Kektituk gas condensate and Shublik oil, AAPG Bulletin 94, 1761–1778 (2010)

    Article  Google Scholar 

  93. D.M. Jarvie: Shale resource systems for oil and gas: Part 2 – Shale-oil resource systems. In: Shale Reservoirs – Giant Resources for the 21st Century, American Association of Petroleum Geologists Memoir, Vol. 97, ed. by J.A. Breyer (AAPG, Tulsa 2012) pp. 89–119

    Google Scholar 

  94. Q.R. Passey, K.M. Bohacs, W.L. Esch, R. Klimentidis, S. Sinha: From oil-prone source rock to gas-producing shale reservoir – Geologic and petrophysical characterization of unconventional shale-gas reservoirs, Int. Oil Gas Conf. Exhib. China, Beijing (Society of Petroleum Engineers, Houston 2010) doi:10.2118/131350-MS

    Google Scholar 

  95. M. Gasparik, A. Ghanizadeh, P. Bertier, Y. Gensterblum, S. Bouw, B.M. Krooss: High-pressure methane sorption isotherms of black shales from the Netherlands, Energy Fuels 26, 4995–5004 (2012)

    Article  CAS  Google Scholar 

  96. A. Neber, S. Cox, T. Levy, O. Schenk, N. Tessen, B. Wygrala, I. Bryant: Systematic evaluation of unconventional resource plays using a new play-based methodology, SPE Asia Pac. Oil Gas Conf. Exhib., Perth (Society of Petroleum Engineers, Houston 2012) doi:10.2188/158571-MS

    Google Scholar 

  97. T. Hantschel, M. Fuecker, T. Matava, A. Kauerauf: Improving petroleum systems modeling with basin-scale 3-D stress-strain models, AAPG Search Discov., article #120098 (2013)

    Google Scholar 

  98. P.M.T.M. Schutjens, T.H. Hanssen, M.H.H. Hettema, J. Merour, P. de Bree, J.W.A. Coremans, G. Helliesen: Compaction-induced porosity/permeability reduction in sandstone reservoirs: Data and model for elasticity-dominated deformation, SPE Reserv. Eval. Eng. SPE 88441, 202–216 (2004)

    Article  Google Scholar 

  99. D. Dralus, K.E. Peters, M.D. Lewan, O. Schenk, M. Herron, K. Tsuchida: Kinetics of the opal-CT to quartz phase transition control diagenetic traps in siliceous shale source rock from the San Joaquin Basin and Hokkaido, Proc. AAPG Annu. Conv. Exhibit., Houston (2011), Article #40771

    Google Scholar 

  100. D. Dralus: Chemical Interactions Between Silicates and Their Pore Fluids: How They Affect Rock Physics Properties from Atomic to Reservoir Scales, Ph.D. Thesis (Stanford Univ., Stanford 2013)

    Google Scholar 

  101. T. Menotti: Investigations into burial history and petroleum system development in the Salinas Basin, California through 1-D modeling, Geol. Soc. Am. Abstr. with Programs 42(4), 78 (2010), 2010 AAPG Pacific section, joint meeting with west region SPE and GSA Cordilleran section, Anaheim

    Google Scholar 

  102. B. Burgreen: The Influence of Convergent Margin Structure on Deep-Water Stratigraphic Architecture, Pore Pressure Evolution, and Source Rock Maturation in the East Coast Basin, New Zealand, Ph.D. Thesis (Geological and Environmental Sciences Department, Stanford Univ., Stanford 2014)

    Google Scholar 

Download references

Acknowledgements

We thank Schlumberger for permission to publish and the following reviewers who helped to improve the manuscript: Ian Bryant, John Dribus, Susan Duffield, Daniel Palmowski, Clifford Walters, Les Magoon, and Rodney Warfford.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth E. Peters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peters, K.E., Schenk, O., Hosford Scheirer, A., Wygrala, B., Hantschel, T. (2017). Basin and Petroleum System Modeling. In: Hsu, C.S., Robinson, P.R. (eds) Springer Handbook of Petroleum Technology. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-49347-3_11

Download citation

Publish with us

Policies and ethics