Skip to main content

Analysis and Simulation of Nonlinear and Nonlocal Transport Equations

  • Chapter
  • First Online:
Innovative Algorithms and Analysis

Part of the book series: Springer INdAM Series ((SINDAMS,volume 16))

Abstract

This article is devoted to the analysis of some nonlinear conservative transport equations, including the so-called aggregation equation with pointy potential, and numerical method devoted to its numerical simulation. Such a model describes the collective motion of individuals submitted to an attractive potential and can be written as a continuity transport equation with a velocity field computed through a self-consistent interaction potential. In the strongly attractive setting, L p solutions may blow up in finite time, then a theory of existence of weak measure solutions has been defined. In this approach, we show the existence of Filippov characteristics allowing to define solutions of the aggregation initial value problem as a pushforward measure. Then numerical analysis of an upwind type scheme is proposed allowing to recover the dynamics of aggregates beyond the blowup time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Space of Probability Measures. Lectures in Mathematics. Birkäuser, Basel (2005)

    MATH  Google Scholar 

  2. Aubin, J.-P., Cellina, A.: Differential Inclusions: Set-Valued Maps and Viability Theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 264. Springer, Berlin (1984)

    Google Scholar 

  3. Benedetto, D., Caglioti, E., Pulvirenti, M.: A kinetic equation for granular media. RAIRO Model. Math. Anal. Numer. 31, 615–641 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertozzi, A.L., Laurent, T., Rosado, J.: L p theory for the multidimensional aggregation equation. Commun. Pure Appl. Math. 64 (1), 45–83 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertozzi, A.L., Garnett, J.B., Laurent, T.: Characterization of radially symmetric finite time blowup in multidimensional aggregation equations. SIAM J. Math. Anal. 44 (2), 651–681 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bianchini, S., Gloyer, M.: An estimate on the flow generated by monotone operators. Commun. Partial Differ. Equ. 36 (5), 777–796 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bodnar, M., Velázquez, J.J.L.: An integro-differential equation arising as a limit of individual cell-based models. J. Differ. Equ. 222 (2), 341–380 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bouchut, F., James, F.: One-dimensional transport equations with discontinuous coefficients. Nonlinear Anal. TMA 32 (7), 891–933 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Campos Pinto, M., Carrillo, J.A., Charles, F., Choi, Y.-P.: Convergence of a linearly transformed particle method for aggregation equations. Preprint. https://arxiv.org/pdf/1507.07405

  10. Carrillo, J.A., DiFrancesco, M., Figalli, A., Laurent, T., Slepčev, D.: Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J. 156, 229–271 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carrillo, J.A., Chertock, A., Huang, Y.: A finite-volume method for nonlinear nonlocal equations with a gradient flow structure. Commun. Comput. Phys. 17 (1), 233–258 (2015)

    Article  MathSciNet  Google Scholar 

  12. Carrillo, J.A., James, F., Lagoutière, F., Vauchelet, N.: The Filippov characteristic flow for the aggregation equation with mildly singular potentials. J. Differ. Equ. 260 (1), 304–338 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Colombo, R.M., Garavello, M., Lécureux-Mercier, M.: A class of nonlocal models for pedestrian traffic. Math. Models Methods Appl. Sci. 22 (4), 1150023, 34 (2012)

    Google Scholar 

  14. Craig, K., Bertozzi, A.L.: A blob method for the aggregation equation. Math. Comput. 85 (300), 1681–1717 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Delarue, F., Lagoutière, F.: Probabilistic analysis of the upwind scheme for transport equations. Arch. Ration. Mech. Anal. 199, 229–268 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Delarue, F., Lagoutière, F., Vauchelet, N.: Convergence order of upwind type schemes for transport equations with discontinuous coefficients. J. Maths. Pures. Appl. (accepted)

    Google Scholar 

  17. Delarue, F., Lagoutière, F., Vauchelet, N.: Convergence order of upwind type schemes for nonlinear aggregation equation with pointy potential (preprint)

    Google Scholar 

  18. Dolak, Y., Schmeiser, C.: Kinetic models for chemotaxis: hydrodynamic limits and spatio-temporal mechanisms. J. Math. Biol. 51, 595–615 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Filbet, F., Laurençot, Ph., Perthame, B.: Derivation of hyperbolic models for chemosensitive movement. J. Math. Biol. 50, 189–207 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Filippov, A.F.: Differential equations with discontinuous right-hand side. Am. Math. Soc. Transl. (2) 42, 199–231 (1964)

    Google Scholar 

  21. Gosse, L., James, F.: Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients. Math. Comput. 69, 987–1015 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gosse, L., Vauchelet, N.: Numerical high-field limits in two-stream kinetic models and 1D aggregation equations. SIAM J. Sci. Comput. 38 (1), A412–A434 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, Y., Bertozzi, A.L.: Self-similar blowup solutions to an aggregation equation in \(\mathbb{R}^{n}\). SIAM J. Appl. Math. 70, 2582–2603 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, Y., Bertozzi, A.L.: Asymptotics of blowup solutions for the aggregation equation. Discrete Contin. Dyn. Syst. Ser. B 17, 1309–1331 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. James, F., Vauchelet, N.: Chemotaxis: from kinetic equations to aggregation dynamics. Nonlinear Differ. Equ. Appl. 20 (1), 101–127 (2013)

    Article  MATH  Google Scholar 

  26. James, F., Vauchelet, N.: Numerical method for one-dimensional aggregation equations. SIAM J. Numer. Anal. 53 (2), 895–916 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. James, F., Vauchelet, N.: Equivalence between duality and gradient flow solutions for one-dimensional aggregation equations. Discrete Contin. Dyn. Syst. 36 (3), 1355–1382 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Li, H., Toscani, G.: Long time asymptotics of kinetic models of granular flows. Arch. Ration. Mech. Anal. 172, 407–428 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Morale, D., Capasso, V., Oelschläger, K.: An interacting particle system modelling aggregation behavior: from individuals to populations. J. Math. Biol. 50, 49–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Okubo, A., Levin, S.: Diffusion and Ecological Problems: Modern Perspectives. Springer, Berlin (2002)

    MATH  Google Scholar 

  31. Poupaud, F., Rascle, M.: Measure solutions to the linear multidimensional transport equation with discontinuous coefficients. Commun. Partial Differ. Equ. 22, 337–358 (1997)

    Article  MATH  Google Scholar 

  32. Santambrogio, F.: Optimal Transport for Applied Mathematicians. Optimal Transport for Applied Mathematicians. Birkhäuser/Springer, Cham (2015)

    Book  MATH  Google Scholar 

  33. Topaz, C.M., Bertozzi, A.L.: Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65, 152–174 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, RI (2003)

    Google Scholar 

  35. Villani, C.: Optimal Transport, Old and New. Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Lagoutière .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lagoutière, F., Vauchelet, N. (2017). Analysis and Simulation of Nonlinear and Nonlocal Transport Equations. In: Gosse, L., Natalini, R. (eds) Innovative Algorithms and Analysis. Springer INdAM Series, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-49262-9_10

Download citation

Publish with us

Policies and ethics