Skip to main content

Local Approximation Using Hermite Functions

  • Chapter
  • First Online:
Progress in Approximation Theory and Applicable Complex Analysis

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 117))

Abstract

We develop a wavelet-like representation of functions in \(L^{p}(\mathbb{R})\) based on their Fourier–Hermite coefficients; i.e., we describe an expansion of such functions where the local behavior of the terms characterize completely the local smoothness of the target function. In the case of continuous functions, a similar expansion is given based on the values of the functions at arbitrary points on the real line. In the process, we give new proofs for the localization of certain kernels, as well as for some very classical estimates such as the Markov–Bernstein inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special Functions, vol. 71. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  2. Chui, C.K., Mhaskar, H.N.: Smooth function extension based on high dimensional unstructured data. Math. Comput. 83 (290), 2865–2891 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chui, C.K., Filbir, F., Mhaskar, H.N.: Representation of functions on big data: graphs and trees. Appl. Comput. Harmon. Anal. 38 (3), 489–509 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Daubechies, I.: Ten Lectures on Wavelets, vol. 61. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  5. DeVore, R.A., Lorentz, G.G.: Constructive Approximation, vol. 303. Springer, New York (1993)

    MATH  Google Scholar 

  6. Dziubański, J.: Triebel-Lizorkin spaces associated with Laguerre and Hermite expansions. In: Proceedings of the American Mathematical Society, pp. 3547–3554 (1997)

    Google Scholar 

  7. Ehler, M., Filbir, F., Mhaskar, H.N.: Locally learning biomedical data using diffusion frames. J. Comput. Biol. 19 (11), 1251–1264 (2012)

    Article  MathSciNet  Google Scholar 

  8. Epperson, J.: Hermite and Laguerre wave packet expansions. Stud. Math. 126 (3), 199–217 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Filbir, F., Mhaskar, H.N.: A quadrature formula for diffusion polynomials corresponding to a generalized heat kernel. J. Fourier Anal. Appl. 16 (5), 629–657 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Filbir, F., Mhaskar, H.N.: Marcinkiewicz–Zygmund measures on manifolds. J. Complex. 27 (6), 568–596 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Freud, G., Giroux, A., Rahman, Q.I.: Sur l’approximation polynomiale avec poids exp(− | x | ). Can. J. Math 30, 358–372 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Levin, E., Lubinsky, D.S.: Orthogonal Polynomials for Exponential Weights. Springer, New York (2012)

    MATH  Google Scholar 

  13. Mhaskar, H.N.: A unified framework for harmonic analysis of functions on directed graphs and changing data. Appl. Comput. Harmonic Anal. (In press); Available online 28 June 2016

    Google Scholar 

  14. Mhaskar, H.N.: Introduction to the Theory of Weighted Polynomial Approximation, vol. 56. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  15. Mhaskar, H.N.: On the representation of band limited functions using finitely many bits. J. Complex. 18 (2), 449–478 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mhaskar, H.N.: On the degree of approximation in multivariate weighted approximation. In: Advanced Problems in Constructive Approximation, pp. 129–141. Springer, New York (2003)

    Google Scholar 

  17. Mhaskar, H.N.: Polynomial operators and local smoothness classes on the unit interval. J. Approx. Theory 131 (2), 243–267 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mhaskar, H.N.: On the representation of smooth functions on the sphere using finitely many bits. Appl. Comput. Harmon. Anal. 18 (3), 215–233 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mhaskar, H.N.: Polynomial operators and local smoothness classes on the unit interval, II. Jaén J. Approx. 1 (1), 1–25 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Mhaskar, H.N.: Eignets for function approximation on manifolds. Appl. Comput. Harmon. Anal. 29 (1), 63–87 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mhaskar, H.N.: A generalized diffusion frame for parsimonious representation of functions on data defined manifolds. Neural Netw. 24 (4), 345–359 (2011)

    Article  MATH  Google Scholar 

  22. Mhaskar, H.N., Prestin, J.: On the detection of singularities of a periodic function. Adv. Comput. Math. 12 (2–3), 95–131 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mhaskar, H.N., Prestin, J.: Polynomial frames: a fast tour. Approximation Theory XI: Gatlinburg, pp. 101–132 (2004)

    Google Scholar 

  24. Mhaskar, H.N., Prestin, J.: On local smoothness classes of periodic functions. J. Fourier Anal. Appl. 11 (3), 353–373 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mhaskar, H.N., Prestin, J.: Polynomial operators for spectral approximation of piecewise analytic functions. Appl. Comput. Harmon. Anal. 26 (1), 121–142 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mhaskar, H.N., Narcowich, F.J., Ward, J.D.: Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature. Math. Comput. 70 (235), 1113–1130 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields, vol. 316. Springer, New York (2013)

    MATH  Google Scholar 

  28. Szegö, G.: Orthogonal Polynomials, vol. 23. Colloquium Publications/American Mathematical Society, Providence (1975)

    MATH  Google Scholar 

Download references

Acknowledgements

The research of HNM is supported in part by Grant W911NF-15-1-0385 from the US Army Research Office. We thank the editors for their kind invitation to submit this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. N. Mhaskar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mhaskar, H.N. (2017). Local Approximation Using Hermite Functions. In: Govil, N., Mohapatra, R., Qazi, M., Schmeisser, G. (eds) Progress in Approximation Theory and Applicable Complex Analysis. Springer Optimization and Its Applications, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-49242-1_16

Download citation

Publish with us

Policies and ethics