Skip to main content

Mycotoxin Biosynthetic Pathways: A Window on the Evolutionary Relationships Among Toxigenic Fungi

  • Chapter
  • First Online:
Modern Tools and Techniques to Understand Microbes

Abstract

Mycotoxin biosynthetic pathway involves many genes which are often clustered and co-expressed in particular conditions. These gene clusters also evolve rapidly and can also be transferred horizontally among species. However, the mechanisms of such mycotoxin cluster origin and assembly still remains a matter of speculation. It has also been studied that the growing number of available genome sequences now enables of predicting novel secondary metabolite clusters and taking a phylogenomic approach to the evolutionary origins of these clusters. The studies on regulatory pathways on control of fungal development and biosynthesis of natural products will open up new broad and exciting fields of applications in which the production of beneficial natural products could be enhanced and the production of those with deleterious effects could be reduced or eliminated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Azziz-Baumgartner E, Lindblade K, Gieseker K, Rogers HS, Kieszak S, Njapau H, Schleicher R, McCoy LF, Misore A, DeCock K, Rubin C, Slutsker L (2005) Case-control study of an acute aflatoxicosis outbreak, Kenya. Environ Health Perspect 113:1799–1783

    Article  Google Scholar 

  • Baker SE (2006) Aspergillus niger genomics: past, present and into the future. Med Mycol 44:S17–S21

    Article  CAS  PubMed  Google Scholar 

  • Benderoth M, Textor S, Windsor AJ, Mitchell-Olds T, Gershenzon J, Kroymann J (2006) Positive selection driving diversification in plant secondary metabolism. Proc Natl Acad Sci USA 103:9118–9123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehm EWA, Plotetz RC, Kistler HC (1994) Statistical analysis of electrophoretic karyotype variation among vegetative compatibility groups of Fusarium oxysporum f. sp. cubense. Mol Plant Microbe Interact 7:196–207

    Article  CAS  Google Scholar 

  • Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893

    Article  PubMed  Google Scholar 

  • Brakhage AA, Al-Abdallah Q, Tüncher A, Spröte P (2005) Evolution of b-lactam biosynthesis and recruitment of trans-acting factors. Phytochemistry 66:1200–1210

    Article  CAS  PubMed  Google Scholar 

  • Brown DW, McCormick SP, Alexander NJ, Proctor RH, Desjardins AE (2001) A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal Genet Biol 32:121–133

    Article  CAS  PubMed  Google Scholar 

  • Brown DW, McCormick SP, Alexander NJ, Proctor RH, Desjardins AE (2002) Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genet Biol 36:224–233

    Article  CAS  PubMed  Google Scholar 

  • Brown DW, Proctor RH, Dyer RB, Plattner RD (2003) Characterization of a Fusarium 2-gene cluster involved in trichothecene C-8 modification. J Agric Food Chem 51:7936–7944

    Article  CAS  PubMed  Google Scholar 

  • Carbone I, Ramirez-Prado JH, Jakobek JL, Horn BW (2007) Gene duplication, modularity and adaptation in the evolution of the aflatoxin gene cluster. BMC Evol Biol 7:111. doi:10.1186/1471-2148-7-111

    Article  PubMed  PubMed Central  Google Scholar 

  • Cary JW, Ehrlich KC (2006) Aflatoxigenicity in Aspergillus: molecular genetics, phylogenetic relationships and evolutionary implications. Mycopathologia 162:167–177

    Article  CAS  PubMed  Google Scholar 

  • CAST—Council for Agricultural Science and Technology (2003) Mycotoxins: risks in plant, animal, and human systems. Task Force Report No. 139. Council for Agricultural Science and Technology, Ames, IA

    Google Scholar 

  • Chang PK, Horn BW, Dorner JW (2005) Sequence breakpoints in the aflatoxin biosynthesis gene cluster and flanking regions in nonaflatoxigenic Aspergillus flavus isolates. Fungal Genet Biol 42:914–923

    Article  CAS  PubMed  Google Scholar 

  • Chang PK, Ehrlich KC, Hua SST (2006) Cladal relatedness among Aspergillus oryzae isolates and Aspergillus flavus S and L morphotype isolates. Int J Food Microbiol 108:172–177

    Article  CAS  PubMed  Google Scholar 

  • Desjardins AE (2006) Fusarium mycotoxins: chemistry, genetics, and biology. APS Press, St. Paul, MN 260p

    Google Scholar 

  • Desjardins AE, Proctor RH, Bai G, McCormick SP, Shaner G, Buechley G, Hohn TM (1996) Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests. Mol Plant Microbe Interact 9:775–781

    Article  CAS  Google Scholar 

  • Dorner JW, Horn BW (2007) Separate and combined applications of nontoxigenic Aspergillus flavus and A. parasiticus for biocontrol of aflatoxin in peanuts. Mycopathologia 163:215–223

    Article  PubMed  Google Scholar 

  • Field B, Osbourn AE (2008) Metabolic diversification—independent assembly of operon-like gene clusters in different plants. Science 320:543–547

    Article  CAS  PubMed  Google Scholar 

  • Frisvad JC, Skouboe P, Samson RA (2005) Taxonomic comparison of three different groups of aflatoxin producers and a new efficient producer of aflatoxin B1, sterigmatocystin and 3-O-methyl sterigmatocystin, Aspergillus rambellii sp. nov. Syst Appl Microbiol 28:442–453

    Article  CAS  PubMed  Google Scholar 

  • Frisvad JC, Smedsgaard J, Samson RA, Larsen TO, Thrane U (2007) Fumonisin B2 production by Aspergillus niger. J Agric Food Chem 55:9727–9732

    Article  CAS  PubMed  Google Scholar 

  • Frisvad JC, Larsen TO, Thrane U, Meijer M, Varga J, Samson RA (2011) Fumonisin and ochratoxin production in industrial Aspergillus niger strains. PLoS One 6(8):e23496 http://dx.doi.org/10.1371/journal.pone.0023496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallo A, Stea G, Battilani P, Logrieco AF, Perrone G (2012) Molecular characterization of an Aspergillus flavus population isolated from maize during the first outbreak of aflatoxin contamination in Italy. Phytopathologia Mediterranea 51:198–206

    CAS  Google Scholar 

  • Gierl A, Frey M (2001) Evolution of benzoxazinone biosynthesis and indole production in maize. Planta 213:493–498

    Article  CAS  PubMed  Google Scholar 

  • Glenn AE, Zitomer NC, Zimeri AM, Williams LD, Riley RT, Proctor RH (2008) Transformation-mediated complementation of a FUM gene cluster deletion in Fusarium verticillioides restores both fumonisin production and pathogenicity on maize seedlings. Mol Plant Microbe Interact 21:87–97

    Article  CAS  PubMed  Google Scholar 

  • Hong SB, Lee M, Kim DH, Varga J, Frisvad JC, Perrone G, Gomi K, Yamada O, Machida M, Houbraken J, Samson RA (2013) Aspergillus luchuensis, an industrially important black Aspergillus in East Asia. PLoS One 8:e63769. doi:10.1371/journal.pone.0063769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IARC (International Agency for Cancer Research) (1993) Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC Monogr Eval Carcinog Risks Hum 56:1–599

    Google Scholar 

  • Khaldi N, Wolfe KH (2011) Evolutionary origins of the fumonisin secondary metabolite gene cluster in Fusarium verticillioides and Aspergillus niger. Int J Evol Biol. doi:10.4061/2011/423821

    PubMed  PubMed Central  Google Scholar 

  • Khaldi N, Collemare J, Lebrun M-H, Wolf KH (2008) Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi. Genome Biol 9:R18.1–R18.10

    Article  Google Scholar 

  • Kimura M, Kaneko I, Komiyama M, Takatsuki A, Koshino H, Yoneyama K, Yamaguchi I (1998) Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins. J Biol Chem 273:1654–1661

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Tokai T, O’Donnell K, Ward TJ, Fujimura M, Hamamoto H, Shibata T, Yamaguchi I (2003) The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes. FEBS Lett 359:105–110

    Article  Google Scholar 

  • Klein J, Sato A, Nikolaidis N (2007) MHC, TSP, and the origin of species: from immunogenetics to evolutionary genetics. Annu Rev Genet 41:281–304

    Article  CAS  PubMed  Google Scholar 

  • Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci USA 100:15670–15675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee T, Han Y-K, Kim K-H, Yun S-H, Lee Y-W (2002) Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl Environ Microbiol 68:2148–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemons D, McGinnis W (2006) Genomic evolution of Hox gene clusters. Science 313:1918–1922

    Article  CAS  PubMed  Google Scholar 

  • Magan N, Medina A, Aldred D (2011) Possible climate change effects on mycotoxin contamination of food crops pre- and postharvest. Plant Pathol 60:150–163

    Article  CAS  Google Scholar 

  • Maier FJ, Miedaner T, Hadeler B, Felk A, Salomon S, Lemmens M et al (2006) Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Mol Plant Pathol 7:449–461

    Article  CAS  PubMed  Google Scholar 

  • Mansson M, Klejnstrup ML, Phipps RK, Nielsen KF, Frisvad JC, Gotfredsen CH, Larsen TO (2010) Isolation and NMR characterization of fumonisin B2 and a new fumonisin B6 from Aspergillus niger. J Agric Food Chem 58:949–953

    Article  CAS  PubMed  Google Scholar 

  • Mauro A, Battilani P, Callicott KA, Giorni P, Pietri A, Cotty PJ (2013) Structure of an Aspergillus flavus population from maize kernels in northern Italy. Int J Food Microbiol 162:1–7

    Article  CAS  PubMed  Google Scholar 

  • McCormick SP, Alexander NJ, Trapp SC, Hohn TM (1999) Disruption of TRI101, the gene encoding trichothecene 3-O-acetyltransferase, from Fusarium sporotrichioides. Appl Environ Microbiol 65:5252–5256

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick SP, Harris LJ, Alexander NJ, Ouellet T, Saparno A, Allard S, Desjardins AE (2004) Tri1 in Fusarium graminearum encodes a P450 oxygenase. Appl Environ Microbiol 70:2044–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina A, Rodriguez A, Magan N (2014) Effect climate change on Aspergillus flavus and aflatoxin B1 production. Front Microbiol 5:1–7

    Article  CAS  Google Scholar 

  • Meek IB, Peplow AW, Ake C, Phillips TD, Beremand MN (2003) Tri1 encodes the cytochrome P450 monooxygenase for C-8 hydroxylation during trichothecene biosynthesis in Fusarium sporotrichioides and resides upstream of another new Tri gene. Appl Environ Microbiol 69:1607–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore GG, Singh R, Horn BW, Carbone I (2009) Recombination and lineage-specific gene loss in the aflatoxin gene cluster of Aspergillus flavus. Mol Ecol 18:4870–4887

    Article  CAS  PubMed  Google Scholar 

  • Muirhead CA, Glass NL, Slatkin M (2002) Multilocus self-recognition systems in fungi as a cause of trans-species polymorphism. Genetics 161:633–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noonim P, Mahakarnchanakul W, Nielsen KF, Frisvad JC, Samson RA (2009) Fumonisin B2 production by Aspergillus niger in Thai coffee beans. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 26:94–100

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell K, Sutton DA, Rinaldi MG, Gueidan C, Crous PW, Geiser DM (2009) A novel multi-locus sequence typing scheme reveals high genetic diversity of human pathogenic members of the Fusarium incarnatum-F. equiseti and F. chlamydosporum species complexes within the U.S. J Clin Microbiol 47:3851–3861

    Article  PubMed  PubMed Central  Google Scholar 

  • Palumbo JD, O’Keeffe TL, Gorski L (2013) Multiplex PCR analysis of fumonisin biosynthetic genes in fumonisin-nonproducing Aspergillus niger and A. awamori strains. Mycologia 105:277–284

    Article  CAS  PubMed  Google Scholar 

  • Patron NJ, Waller RF, Cozijnsen AJ, Straney DC, Gardiner DM, Nierman WC, Howlett BJ (2007) Origin and distribution of epipolythiodioxopiperazine (ETP) gene clusters in filamentous ascomycetes. BMC Evol Biol 7:174. doi:10.1186/1471-2148-7-174

    Article  PubMed  PubMed Central  Google Scholar 

  • Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, d’Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wosten HA, Zeng AP, van Ooyen AJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231

    Article  PubMed  Google Scholar 

  • Peplow AW, Meek IB, Wiles MC, Phillips TD, Beremand MN (2003) Tri16 is required for esterification of position C-8 during trichothecene mycotoxin production by Fusarium sporotrichioides. Appl Environ Microbiol 69:5935–5940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrone G, Stea G, Epifani F, Varga J, Frisvad JC, Samson RA (2011) Aspergillus niger contains the cryptic phylogenetic species A. awamori. Fungal Biol 115:1138–1150

    Article  CAS  PubMed  Google Scholar 

  • Pildain MB, Vaamonde G, Cabral D (2004) Analysis of population structure of Aspergillus flavus from peanut based on vegetative compatibility, geographic origin, mycotoxin and sclerotia production. Int J Food Microbiol 93:31–40

    Article  CAS  PubMed  Google Scholar 

  • Powell AJ, Jacobson DJ, Natvig DO (2007) Ancestral polymorphism and linkage disequilibrium at the het-6 region in pseudohomothallic Neurospora tetrasperma. Fungal Genet Biol 44:896–904

    Article  CAS  PubMed  Google Scholar 

  • Proctor RH, Brown DW, Plattner RD, Desjardins AE (2003) Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet Biol 38:237–249

    Article  CAS  PubMed  Google Scholar 

  • Proctor RH, Plattner RD, Brown DW, Seo J-A, Lee Y-W (2004) Discontinuous distribution of fumonisin biosynthetic genes in the Gibberella fujikuroi species complex. Mycol Res 108:815–822

    Article  CAS  PubMed  Google Scholar 

  • Proctor RH, Plattner RD, Desjardins AE, Busman M, Butchko RAE (2006) Fumonisin production in the maize pathogen Fusarium verticillioides: genetic basis of naturally occurring chemical variation. J Agric Food Chem 54:2424–2430

    Article  CAS  PubMed  Google Scholar 

  • Proctor RH, Busman M, Seo J-A, Lee YW, Plattner RD (2008) A fumonisin biosynthetic gene cluster in Fusarium oxysporum strain O-1890 and the genetic basis for B versus C fumonisin production. Fungal Genet Biol 45:1016–1026

    Article  CAS  PubMed  Google Scholar 

  • Proctor RH, McCormick SP, Alexander NJ, Desjardins AE (2009) Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus Fusarium. Mol Microbiol 74:1128–1142

    Article  CAS  PubMed  Google Scholar 

  • Proctor RH, Van Hove F, Susca A, Stea G, Busman M, Van der Lee T et al (2013) Birth, death and horizontal gene transfer of the fumonisin biosynthetic gene cluster during the evolutionary diversification of Fusarium. Mol Microbiol 90:290–306

    CAS  PubMed  Google Scholar 

  • Saikia S, Nicholson MJ, Young C, Parker EJ, Scott B (2008) The genetic basis for indole-diterpene chemical diversity in filamentous fungi. Mycol Res 112:184–199

    Article  CAS  PubMed  Google Scholar 

  • Slot JC, Rokas A (2011) Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Curr Biol 21:134–139

    Article  CAS  PubMed  Google Scholar 

  • Susca A, Proctor RH, Butchko RA, Haidukowski M, Stea G, Logrieco A, Moretti A (2014) Variation in the fumonisin biosynthetic gene cluster in fumonisin-producing and nonproducing black aspergilli. Fungal Genet Biol 73:39–52

    Article  CAS  PubMed  Google Scholar 

  • Tokai T, Fujimura M, Inoue H, Aoki T, Ohta K, Shibata T, Yamaguchi I, Kimura M (2005) Concordant evolution of trichothecene 3-O-acetyltransferase and rDNA species phylogeny of trichothecene-producing and nonproducing fusaria and other ascomycetous fungi. Microbiology 151:509–519

    Article  CAS  PubMed  Google Scholar 

  • Vaamonde G, Patriarca A, Pinto VF, Comerio R, Degrossi C (2003) Variability of aflatoxin and cyclopiazonic acid production by Aspergillus section Flavi from different substrates in Argentina. Int J Food Microbiol 88:79–84

    Article  CAS  PubMed  Google Scholar 

  • Van Hove F, Waalwijk C, Logrieco A, Munaut F, Moretti A (2011) Gibberella musae (Fusarium musae) sp. nov.: a new species from banana is sister to F. verticillioides. Mycologia 103:570–585

    Article  CAS  PubMed  Google Scholar 

  • Varga J, Kocsubé S, Suri S, Szigeti G, Szekeres A, Varga M, Tóth B, Bartók T (2010) Fumonisin contamination and fumonisin producing black Aspergilli in dried vine fruits of different origin. Int J Food Microbiol 143:143–149

    Article  CAS  PubMed  Google Scholar 

  • Varga J, Frisvad JC, Kocsubé S, Brankovics B, Tóth B et al (2011) New and revisited species in Aspergillus section Nigri. Stud Mycol 69:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waalwijk C, Van Der Lee T, De Vries I, Hesselink T, Arts J, Kema GHJ (2004) Synteny in toxigenic Fusarium species: the fumonisin gene cluster and the mating type region as examples. Eur J Plant Pathol 110:533–544

    Article  CAS  Google Scholar 

  • Walton JD (2000) Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal Genet Biol 30:167–172

    Article  CAS  PubMed  Google Scholar 

  • Ward TJ, Bielawski JP, Kistler HC, Sullivan E, O’Donnell K (2002) Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc Natl Acad Sci USA 99:9278–9283. doi:10.1073/pnas.142307199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus EM, Espino JJ, Huß K, Michielse CB, Albermann S, Wagner D, Bergner SV, Connolly LR, Fischer A, Reuter G, Kleigrewe K, Bald T, Wingfield BD, Ophir R, Freeman S, Hippler M, Smith KM, Brown DW, Proctor RH, Münsterkötter M, Freitag M, Humpf H-U, Güldener U, Tudzynski B (2013) Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 9:1–35

    Article  Google Scholar 

  • Wong S, Wolfe KH (2005) Birth of a metabolic gene cluster in yeast by adaptive gene relocation. Nat Genet 37:777–782

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Chang PK, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, Payne GA, Linz JE, Woloshuk CP, Bennett JW (2004) Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70:1253–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio F. Logrieco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Susca, A., Moretti, A., Logrieco, A.F. (2017). Mycotoxin Biosynthetic Pathways: A Window on the Evolutionary Relationships Among Toxigenic Fungi. In: Varma, A., Sharma, A. (eds) Modern Tools and Techniques to Understand Microbes. Springer, Cham. https://doi.org/10.1007/978-3-319-49197-4_9

Download citation

Publish with us

Policies and ethics