Skip to main content

Electrochemically Modulated Luminescence in Nanophotonic Structures

  • Chapter
  • First Online:
Luminescence in Electrochemistry
  • 1339 Accesses

Abstract

Electrochemistry can be applied to extract fundamental information about charge transfer processes in a large number of situations. However, at ultrasmall scales, when the system of interest contains mesoscopic collections of matter, direct electrical measurements become difficult, and there is ample reason to couple electron transfer reactions to luminescence. This chapter summarizes a new class of spectroelectrochemical experiments in which a very small numbers of redox-active molecules interact with nanophotonic structures so that the molecular luminescence is strongly coupled to the electrochemical event in zero-dimensional, 0-D, and one-dimensional, 1-D, architectures. In this chapter, we will describe various nanophotonic and nanoelectronic structures, especially the zero-mode waveguide, ZMW, that are being coupled to mesoscopic samples of redox-active molecules in order to carry out ultrasensitive measurements on the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Correia, A.N., Mascaro, L.H., Machado, S.A.S., Mazo, L.H., Avaca, L.A.: Ultramicroelectrodes. 1. Theoretical revision and outlook. Quim. Nova 18, 475–480 (1995)

    CAS  Google Scholar 

  2. Mozos, J.L., Wan, C.C., Taraschi, G., Wang, J., Guo, H.: Transport through a single-atom junction. J. Phys. Cond. Matter 10, 2663–2671 (1998)

    Article  CAS  Google Scholar 

  3. Oliver, D.J., Maassen, J., El Ouali, M., Paul, W., Hagedorn, T., Miyahara, Y., Qi, Y., Guo, H., Grutter, P.: Conductivity of an atomically defined metallic interface. Proc. Natl. Acad. Sci. USA 109, 19097–19102 (2012)

    Article  CAS  Google Scholar 

  4. Kemery, P.J., Steehler, J.K., Bohn, P.W.: Electric field mediated transport in nanometer diameter channels. Langmuir 14, 2884–2889 (1998)

    Article  CAS  Google Scholar 

  5. Kuo, T.C., Cannon, D.M., Chen, Y.N., Tulock, J.J., Shannon, M.A., Sweedler, J.V., Bohn, P.W.: Gateable nanofluidic interconnects for multilayered microfluidic separation systems. Anal. Chem. 75, 1861–1867 (2003)

    Article  CAS  Google Scholar 

  6. Kuo, T.C., Cannon, D.M., Shannon, M.A., Bohn, P.W., Sweedler, J.V.: Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates. Sens. Actuators, A Phys. 102, 223–233 (2003)

    Article  CAS  Google Scholar 

  7. Xiao, X.Y., Xu, B.Q., Tao, N.J.: Measurement of single molecule conductance: benzenedithiol and benzenedimethanethiol. Nano Lett. 4, 267–271 (2004)

    Article  CAS  Google Scholar 

  8. Schafer, R., Hecker, K., Hegger, H., Langheinrich, W.: Experimental study of mesoscopic fluctuations in nonlinear conductance and magnetoconductance. Phys. Rev. B 53, 15964–15970 (1996)

    Article  CAS  Google Scholar 

  9. Hoeben, F.J.M., Meijer, F.S., Dekker, C., Albracht, S.P.J., Heering, H.A., Lemay, S.G.: Toward single-enzyme molecule electrochemistry: NiFe-hydrogenase protein film voltammetry at nanoelectrodes. ACS Nano 2, 2497–2504 (2008)

    Article  CAS  Google Scholar 

  10. Bard, A.J., Fan, F.R.F., Kwak, J., Lev, O.: Scanning electrochemical microscopy—introduction and principles. Anal. Chem. 61, 132–138 (1989)

    Article  CAS  Google Scholar 

  11. Amemiya, S., Bard, A.J., Fan, F.R.F., Mirkin, M.V., Unwin, P.R.: Scanning electrochemical microscopy. Ann. Rev. Anal. Chem. 1, 95–131 (2008)

    Article  CAS  Google Scholar 

  12. Bard, A.J., Faulkner, L.R.: Electrochemical methods. John Wiley & Sons, New York (2001)

    Google Scholar 

  13. Sun, P., Laforge, F.O., Mirkin, M.V.: Scanning electrochemical microscopy in the 21st century. PCCP 9, 802–823 (2007)

    Article  CAS  Google Scholar 

  14. Zevenbergen, M.A.G., Singh, P.S., Goluch, E.D., Wolfrum, B.L., Lemay, S.G.: Stochastic sensing of single molecules in a nanofluidic electrochemical device. Nano Lett. 11, 2881–2886 (2011)

    Article  CAS  Google Scholar 

  15. Sun, P., Mirkin, M.V.: Electrochemistry of individual molecules in zeptoliter volumes. J. Am. Chem. Soc. 130, 8241–8250 (2008)

    Article  CAS  Google Scholar 

  16. Zevenbergen, M.A.G., Singh, P.S., Goluch, E.D., Wolfrum, B.L., Lemay, S.G.: Electrochemical correlation spectroscopy in nanofluidic cavities. Anal. Chem. 81, 8203–8212 (2009)

    Article  CAS  Google Scholar 

  17. Fan, F.R.F., Bard, A.J.: Electrochemical detection of single molecules. Science 267, 871–874 (1995)

    Article  CAS  Google Scholar 

  18. Ma, C.X., Contento, N.M., Bohn, P.W.: Redox cycling on recessed ring-disk nanoelectrode arrays in the absence of supporting electrolyte. J. Am. Chem. Soc. 136, 7225–7228 (2014)

    Article  CAS  Google Scholar 

  19. Lemay, S.G., Kang, S., Mathwig, K., Singh, P.S.: Single-molecule electrochemistry: present status and outlook. Acc. Chem. Res. 46, 369–377 (2013)

    Article  CAS  Google Scholar 

  20. Mathwig, K., Mampallil, D., Kang, S., Lemay, S.G.: Electrical cross-correlation spectroscopy: measuring picoliter-per-minute flows in nanochannels. Phys. Rev. Lett. 109, 118302 (2012)

    Article  Google Scholar 

  21. Wolfrum, B., Zevenbergen, M., Lemay, S.: Nanofluidic redox cycling amplification for the selective detection of catechol. Anal. Chem. 80, 972–977 (2008)

    Article  CAS  Google Scholar 

  22. Bard, A.J., Crayston, J.A., Kittlesen, G.P., Shea, T.V., Wrighton, M.S.: Digital-simulation of the measured electrochemical response of reversible redox couples at microelectrode arrays—consequences arising from closely spaced ultramicroelectrodes. Anal. Chem. 58, 2321–2331 (1986)

    Article  CAS  Google Scholar 

  23. Niwa, O., Morita, M., Tabei, H.: Electrochemical-behavior of reversible redox species at interdigitated array electrodes with different geometries—consideration of redox cycling and collection efficiency. Anal. Chem. 62, 447–452 (1990)

    Article  CAS  Google Scholar 

  24. Goluch, E.D., Wolfrum, B., Singh, P.S., Zevenbergen, M.A.G., Lemay, S.G.: Redox cycling in nanofluidic channels using interdigitated electrodes. Anal. Bioanal. Chem. 394, 447–456 (2009)

    Article  CAS  Google Scholar 

  25. Rahirni, M., Mikkelsen, S.R.: Cyclic biamperometry at micro-interdigitated electrodes. Anal. Chem. 83, 7555–7559 (2011)

    Article  Google Scholar 

  26. Ma, C., Contento, N.M., Gibson, L.R., Bohn, P.W.: Recessed ring-disk nanoelectrode arrays integrated in nanofluidic structures for selective electrochemical detection. Anal. Chem. 85, 9882–9888 (2013)

    Article  CAS  Google Scholar 

  27. Ma, C.X., Contento, N.M., Gibson, L.R., Bohn, P.W.: Redox cycling in nanoscale-recessed ring-disk electrode arrays for enhanced electrochemical sensitivity. ACS Nano 7, 5483–5490 (2013)

    Article  CAS  Google Scholar 

  28. Ma, C.X., Zaino, L.P., Bohn, P.W.: Self-induced redox cycling coupled luminescence on nanopore recessed disk-multiscale bipolar electrodes. Chem. Sci. 6, 3173–3179 (2015)

    Article  CAS  Google Scholar 

  29. Menshykau, D., Cortina-Puig, M., del Campo, F.J., Munoz, F.X., Compton, R.G.: Plane-recessed disk electrodes and their arrays in transient generator-collector mode: the measurement of the rate of the chemical reaction of electrochemically generated species. J. Electroanal. Chem. 648, 28–35 (2010)

    Article  CAS  Google Scholar 

  30. Zhu, F., Yan, J.W., Lu, M., Zhou, Y.L., Yang, Y., Mao, B.W.: A strategy for selective detection based on interferent depleting and redox cycling using the plane-recessed microdisk array electrodes. Electrochim. Acta 56, 8101–8107 (2011)

    Article  CAS  Google Scholar 

  31. Mathwig, K., Aartsma, T.J., Canters, G.W., Lemay, S.G.: Nanoscale methods for single-molecule electrochemistry. Ann. Rev. Anal. Chem. 7(7), 383–404 (2014)

    Article  CAS  Google Scholar 

  32. Singh, P.S., Chan, H.S.M., Kang, S., Lemay, S.G.: Stochastic amperometric fluctuations as a probe for dynamic adsorption in nanofluidic electrochemical systems. J. Am. Chem. Soc. 133, 18289–18295 (2011)

    Article  CAS  Google Scholar 

  33. Lu, H.P., Xun, L.Y., Xie, X.S.: Single-molecule enzymatic dynamics. Science 282, 1877–1882 (1998)

    Article  CAS  Google Scholar 

  34. Palacios, R.E., Fan, F.R.F., Bard, A.J., Barbara, P.F.: Single-molecule spectroelectrochemistry (SMS-EC). J. Am. Chem. Soc. 128, 9028–9029 (2006)

    Article  CAS  Google Scholar 

  35. Zhao, J., Zaino, L.P., Bohn, P.W.: Potential-dependent single molecule blinking dynamics for flavin adenine dinucleotide covalently immobilized in zero-mode waveguide array of working electrodes. Faraday Discuss. 164, 57–69 (2013)

    Article  CAS  Google Scholar 

  36. Lei, C.H., Hu, D.H., Ackerman, E.J.: Single-molecule fluorescence spectroelectrochemistry of cresyl violet. Chem. Commun. 43, 5490–5492 (2008)

    Article  Google Scholar 

  37. Liu, J., Hill, C.M., Pan, S.L., Liu, H.Y.: Interfacial charge transfer events of BODIPY molecules: single molecule spectroelectrochemistry and substrate effects. PCCP 16, 23150–23156 (2014)

    Article  CAS  Google Scholar 

  38. Cortes, E., Etchegoin, P.G., Le Ru, E.C., Fainstein, A., Vela, M.E., Salvarezza, R.C.: Monitoring the electrochemistry of single molecules by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 132, 18034–18037 (2010)

    Article  CAS  Google Scholar 

  39. Cortes, E., Etchegoin, P.G., Le Ru, E.C., Fainstein, A., Vela, M.E., Salvarezza, R.C.: Strong correlation between molecular configurations and charge-transfer processes probed at the single-molecule level by surface-enhanced Raman scattering. J. Am. Chem. Soc. 135, 2809–2815 (2013)

    Article  CAS  Google Scholar 

  40. Chang, Y.L., Palacios, R.E., Fan, F.R.F., Bard, A.J., Barbara, P.F.: Electrogenerated chemiluminescence of single conjugated polymer nanoparticles. J. Am. Chem. Soc. 130, 8906–8907 (2008)

    Article  CAS  Google Scholar 

  41. Hill, C.M., Bennett, R., Zhou, C., Street, S., Zheng, J., Pan, S.L.: Single Ag nanoparticle spectroelectrochemistry via dark-field scattering and fluorescence microscopies. J. Phys. Chem. C 119, 6760–6768 (2015)

    Article  CAS  Google Scholar 

  42. Hill, C.M., Pan, S.L.: A dark-field scattering spectroelectrochemical technique for tracking the electrodeposition of single silver nanoparticles. J. Am. Chem. Soc. 135, 17250–17253 (2013)

    Article  CAS  Google Scholar 

  43. Engelkamp, H., Hatzakis, N.S., Hofkens, J., De Schryver, F.C., Nolte, R.J.M., Rowan, A.E.: Do enzymes sleep and work? Chem. Commun. 9, 935–940 (2006)

    Article  Google Scholar 

  44. Gupta, A., Aartsma, T.J., Canters, G.W.: One at a time: intramolecular electron-transfer kinetics in small laccase observed during turnover. J. Am. Chem. Soc. 136, 2707–2710 (2014)

    Article  CAS  Google Scholar 

  45. Goldsmith, R.H., Tabares, L.C., Kostrz, D., Dennison, C., Aartsma, T.J., Canters, G.W., Moerner, W.E.: Redox cycling and kinetic analysis of single molecules of solution-phase nitrite reductase. Proc. Natl. Acad. Sci. USA 108, 17269–17274 (2011)

    Article  CAS  Google Scholar 

  46. Xie, X.S., Lu, H.P.: Single-molecule enzymology. J. Biol. Chem. 274, 15967–15970 (1999)

    Article  CAS  Google Scholar 

  47. Shen, H., Xu, W.L., Chen, P.: Single-molecule nanoscale electrocatalysis. PCCP 12, 6555–6563 (2010)

    Article  CAS  Google Scholar 

  48. Xu, W., Shen, H., Kim, Y.J., Zhou, X., Liu, G., Park, J., Chen, P.: Single-molecule electrocatalysis by single-walled carbon nanotubes. Nano Lett. 9, 3968–3973 (2009)

    Article  CAS  Google Scholar 

  49. Wu, R.X., Chen, R.Y., Qin, C.B., Gao, Y., Qiao, Z.X., Zhang, G.F., Xiao, L.T., Jia, S.T.: An electric field induced reversible single-molecule fluorescence switch. Chem. Commun. 51, 7368–7371 (2015)

    Article  CAS  Google Scholar 

  50. Zhang, G.F., Xiao, L.T., Chen, R.Y., Gao, Y., Wang, X.B., Jia, S.T.: Single-molecule interfacial electron transfer dynamics manipulated by an external electric current. PCCP 13, 13815–13820 (2011)

    Article  CAS  Google Scholar 

  51. Chen, R.Y., Wu, R.X., Zhang, G.F., Gao, Y., Xiao, L.T., Jia, S.T.: Electron transfer-based single molecule fluorescence as a probe for nano-environment dynamics. Sensors 14, 2449–2467 (2014)

    Article  Google Scholar 

  52. Lei, C.H., Hu, D.H., Ackerman, E.: Clay nanoparticle-supported single-molecule fluorescence spectroelectrochemistry. Nano Lett. 9, 655–658 (2009)

    Article  CAS  Google Scholar 

  53. Akkilic, N., Kamran, M., Stan, R., Sanghamitra, N.J.M.: Voltage-controlled fluorescence switching of a single redox protein. Biosens. Bioelectron. 67, 747–751 (2015)

    Article  CAS  Google Scholar 

  54. Wilson, A.J., Willets, K.A.: Visualizing site-specific redox potentials on the surface of plasmonic nanoparticle aggregates with superlocalization SERS microscopy. Nano Lett. 14, 939–945 (2014)

    Article  CAS  Google Scholar 

  55. Zaino, L.P.I., Grismer, D.A., Han, D., Crouch, G.M., Bohn, P.W.: Single molecule spectroelectrochemistry of freely diffusing flavin mononucleotide in zero-dimensional nanophotonic structures. Faraday Disc. 184, 101–115 (2015)

    Article  CAS  Google Scholar 

  56. Zhao, J., Branagan, S.P., Bohn, P.W.: Single-molecule enzyme dynamics of monomeric sarcosine oxidase in a gold-based zero-mode waveguide. Appl. Spectrosc. 66, 163–169 (2012)

    Article  CAS  Google Scholar 

  57. Levene, M.J., Korlach, J., Turner, S.W., Foquet, M., Craighead, H.G., Webb, W.W.: Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003)

    Article  CAS  Google Scholar 

  58. Wagner, M., Trickey, P., Chen, Z., Mathews, F.S., Jorns, M.S.: Monomeric sarcosine oxidase: 1. Flavin reactivity and active site binding determinants. Biochemistry 39, 8813–8824 (2000)

    Article  CAS  Google Scholar 

  59. Wagner, M.A., Jorns, M.S.: Monomeric sarcosine oxidase: 2. Kinetic studies with sarcosine, alternate substrates, and a substrate analogue. Biochemistry 39, 8825–8829 (2000)

    Article  CAS  Google Scholar 

  60. Kao, Y.-T., Saxena, C., He, T.-F., Guo, L., Wang, L., Sancar, A., Zhong, D.: Ultrafast dynamics of flavins in five redox states. J. Am. Chem. Soc. 130, 13132–13139 (2008)

    Article  CAS  Google Scholar 

  61. Tan, S.L.J., Kan, J.M., Webster, R.D.: Differences in proton-coupled electron-transfer reactions of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) between buffered and unbuffered aqueous solutions. J. Phys. Chem. B 117, 13755–13766 (2013)

    Article  CAS  Google Scholar 

  62. Jin, E.X., Xu, X.F.: Finitte-difference time-domain studies on optical transmission through planar nano-apertures in a metal film. Jpn. J. Appl. Phys. Part 1(43), 407–417 (2004)

    Article  Google Scholar 

  63. Nuzzo, R.G., Allara, D.L.: Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105, 4481–4483 (1983)

    Article  CAS  Google Scholar 

  64. Xu, W., Ma, C., Bohn, P.W.: Coupling of independent electrochemical reactions and fluorescence at closed bipolar interdigitated electrode arrays. ChemElectrochem 3, 422–428 (2016)

    Google Scholar 

  65. Mavre, F., Chow, K.F., Sheridan, E., Chang, B.Y., Crooks, J.A., Crooks, R.M.: A theoretical and experimental framework for understanding electrogenerated chemiluminescence (ECL) emission at bipolar electrodes. Anal. Chem. 81, 6218–6225 (2009)

    Article  CAS  Google Scholar 

  66. Oja, S.M., Guerrette, J.P., David, M.R., Zhang, B.: Fluorescence-enabled electrochemical microscopy with dihydroresorufin as a fluorogenic indicator. Anal. Chem. 86, 6040–6048 (2014)

    Article  CAS  Google Scholar 

  67. Guerrette, J.P., Percival, S.J., Zhang, B.: Fluorescence coupling for direct imaging of electrocatalytic heterogeneity. J. Am. Chem. Soc. 135, 855–861 (2013)

    Article  CAS  Google Scholar 

  68. Chow, K.F., Mavre, F., Crooks, J.A., Chang, B.Y., Crooks, R.M.: A large-scale, wireless electrochemical bipolar electrode microarray. J. Am. Chem. Soc. 131, 8364–8365 (2009)

    Article  CAS  Google Scholar 

  69. Reddington, E., Sapienza, A., Gurau, B., Viswanathan, R., Sarangapani, S., Smotkin, E.S., Mallouk, T.E.: Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science 280, 1735–1737 (1998)

    Article  CAS  Google Scholar 

  70. Murphy, J.N., Cheng, A.K.H., Yu, H.Z., Bizzotto, D.: On the nature of DNA self-assembled monolayers on Au: measuring surface heterogeneity with electrochemical in situ fluorescence microscopy. J. Am. Chem. Soc. 131, 4042–4050 (2009)

    Article  CAS  Google Scholar 

  71. Salverda, J.M., Patil, A.V., Mizzon, G., Kuznetsova, S., Zauner, G., Akkilic, N., Canters, G.W., Davis, J.J., Heering, H.A., Aartsma, T.J.: Fluorescent cyclic voltammetry of immobilized Azurin: direct observation of thermodynamic and kinetic heterogeneity. Angew. Chem. Int. Ed. 49, 5776–5779 (2010)

    Article  CAS  Google Scholar 

  72. Bard, A.J.: Toward single enzyme molecule electrochemistry. ACS Nano 2, 2437–2440 (2008)

    Article  CAS  Google Scholar 

  73. Fan, F.R.F., Kwak, J., Bard, A.J.: Single molecule electrochemistry. J. Am. Chem. Soc. 118, 9669–9675 (1996)

    Article  CAS  Google Scholar 

  74. Singh, P.S., Katelhon, E., Mathwig, K., Wolfrum, B., Lemay, S.G.: Stochasticity in single-molecule nanoelectrochemistry: origins, consequences, and solutions. ACS Nano 6, 9662–9671 (2012)

    Article  CAS  Google Scholar 

  75. Castle, P.J., Bohn, P.W.: Interfacial scattering at electrochemically fabricated atom-scale junctions between thin gold film electrodes in a microfluidic channel. Anal. Chem. 77, 243–249 (2005)

    Article  CAS  Google Scholar 

  76. Shi, P., Zhang, J., Lin, H.-Y., Bohn, P.W.: The effect of molecular adsorption on electrical conductance of single Au nanowires fabricated by electron beam lithography and focused ion beam etching. Small 6, 2598–2603 (2010)

    Article  CAS  Google Scholar 

  77. Hwang, T.-W., Bohn, P.W.: Robust Au-Ag-Au bimetallic atom-scale junctions fabricated by self-limited Ag electrodeposition at Au nanogaps. ACS Nano 5, 8434–8441 (2011)

    Article  CAS  Google Scholar 

  78. Hwang, T.-W., Bohn, P.W.: Potential-dependent restructuring and chemical-noise at Au-Ag-Au atomic-scale junctions. ACS Nano 8, 1718–1727 (2014)

    Article  CAS  Google Scholar 

  79. Hwang, T.-W., Branagan, S.P., Bohn, P.W.: Chemical noise produced by equilibrium adsorption/desorption of surface pyridine at Au-Ag-Au bimetallic atom-scale junctions studied by fluctuation spectroscopy. J. Am. Chem. Soc. 135, 4522–4529 (2013)

    Article  CAS  Google Scholar 

  80. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)

    Article  CAS  Google Scholar 

  81. Liu, Y., Zhang, X.: Metamaterials: a new frontier of science and technology. Chem. Soc. Rev. 40, 2494–2507 (2011)

    Article  CAS  Google Scholar 

  82. Chen, H., Chan, C.T., Sheng, P.: Transformation optics and metamaterials. Nat. Mater. 9, 387–396 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work described in this chapter from the authors’ laboratory was supported by the US National Science Foundation and the US Department of Energy Office of Science under various grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. W. Bohn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Xu, W., Zaino, L.P., Bohn, P.W. (2017). Electrochemically Modulated Luminescence in Nanophotonic Structures. In: Miomandre, F., Audebert, P. (eds) Luminescence in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-49137-0_3

Download citation

Publish with us

Policies and ethics