Skip to main content

An Architecture for processing of Heterogeneous Sources

  • Conference paper
  • First Online:
Advances on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC 2016)

Abstract

Different sources of information generate every day huge amount of data. For example, let us consider social networks: here the number of active users is impressive; they process and publish information in different formats and data are heterogeneous in their topics and in the published media (text, video, images, audio, etc.). In this work, we present a general framework for event detection in processing of heterogeneous data from social networks. The framework we propose, implements some techniques that users can exploit for malicious events detection on Twitter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. N. Diakopoulos, M. Naaman, and F. Kivran-Swaine, “Diamonds in the rough: Social media visual analytics for journalistic inquiry,” in Visual Analytics Science and Technology (VAST), 2010 IEEE Symposium on, Oct 2010, pp. 115–122.

    Google Scholar 

  2. S. Yardi and danah boyd, “Tweeting from the town square: Measuring geographic local networks,” in International Conference onWeblogs and Social Media. American Association for Artificial Intelligence, May 2010. [Online]. Available: http://research.microsoft.com/apps/pubs/default.aspx?id=122433

  3. T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shakes twitter users: Real-time event detection by social sensors,” in Proceedings of the 19th International Conference on World Wide Web, ser. WWW ’10. New York, NY, USA: ACM, 2010, pp. 851–860. [Online]. Available: http://doi.acm.org/10.1145/1772690.1772777

  4. M. Naaman, J. Boase, and C.-H. Lai, “Is it really about me?: Message content in social awareness streams,” in Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work, ser. CSCW ’10. New York, NY, USA: ACM, 2010, pp. 189–192.

    Google Scholar 

  5. H. Becker, M. Naaman, and L. Gravano, “Beyond trending topics: Real-world event identification on twitter,” 2011.

    Google Scholar 

  6. ——, “Learning similarity metrics for event identification in social media,” in Proceedings of the Third ACM International Conference on Web Search and Data Mining, ser. WSDM ’10. New York, NY, USA: ACM, 2010, pp. 291–300.

    Google Scholar 

  7. F. Atefeh and W. Khreich, “A survey of techniques for event detection in twitter,” Comput. Intell., vol. 31, no. 1, pp. 132–164, Feb. 2015. [Online]. Available: http://dx.doi.org/10.1111/coin.12017

  8. K. Essmaeel, L. Gallo, E. Damiani, G. De Pietro, and A. Dipanda, “Comparative evaluation of methods for filtering kinect depth data,” Multimedia Tools and Applications, vol. 74, no. 17, pp. 7331–7354, 2015.

    Google Scholar 

  9. E. Aramaki, S. Maskawa, and M. Morita, “Twitter catches the flu: Detecting influenza epidemics using twitter,” in Proceedings of Conference on Empirical Methods in Natural Language Processing, 2011.

    Google Scholar 

  10. A. Lamb, M. J. Paul, and M. Dredze, “Separating fact from fear: Tracking flu infections on twitter.” in HLT-NAACL, 2013, pp. 789–795.

    Google Scholar 

  11. J. Chon, R. Raymond, H.Wang, and F.Wang, “Modeling flu trends with real-time geo-tagged twitter data streams,” in Wireless Algorithms, Systems, and Applications. Springer, 2015, pp. 60–69.

    Google Scholar 

  12. E. Diaz-Aviles and A. Stewart, “Tracking twitter for epidemic intelligence: Case study: Ehec/hus outbreak in germany, 2011,” in Proceedings of the 4th Annual ACM Web Science Conference, ser. WebSci ’12. New York, NY, USA: ACM, 2012, pp. 82–85. [Online]. Available: http://doi.acm.org/10.1145/2380718.2380730

  13. R. Chunara, J. R. Andrews, and J. S. Brownstein, “Social and news media enable estimation of epidemiological patterns early in the 2010 haitian cholera outbreak,” The American Journal of Tropical Medicine and Hygiene, vol. 86, no. 1, pp. 39–45, 2012. [Online]. Available: http://www.ajtmh.org/content/86/1/39.abstract

  14. J. Gomide, A. Veloso, W. Meira, V. Almeida, F. Benevenuto, F. Ferraz, and M. Teixeira, “Dengue surveillance based on a computational model of spatio-temporal locality of twitter,” in Proceedings of ACM WebSci’2011, 2011.

    Google Scholar 

  15. V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACMComput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009.

    Google Scholar 

  16. J. R. Hobbs and E. Riloff, “Information extraction,” in Handbook of Natural Language Processing, Second Edition, N. Indurkhya and F. J. Damerau, Eds. Boca Raton, FL: CRC Press, Taylor and Francis Group, 2010. 17. F. Amato, A. Mazzeo, A. Penta, and A. Picariello, “Using NLP and Ontologies for Notary

    Google Scholar 

  17. Document Management Systems,” in Proceedings of the 19th International Conference on Database and Expert Systems Application, 2008.

    Google Scholar 

  18. F. Amato, V. Casola, N. Mazzocca, and S. Romano, “A semantic approach for fine-grain access control of e-health documents,” Logic Journal of the IGPL, vol. 21, no. 4, pp. 692–701, 2013.

    Google Scholar 

  19. F. Amato, A. Fasolino, A. Mazzeo, V. Moscato, A. Picariello, S. Romano, and P. Tramontana, “Ensuring semantic interoperability for e-health applications,” 2011, pp. 315–320.

    Google Scholar 

  20. E. Riloff, “Automatically constructing a dictionary for information extraction tasks,” in Proceedings of the eleventh national conference on Artificial intelligence, 1993.

    Google Scholar 

  21. R. Grishman, “Information extraction: Capabilities and challenges,” 2012.

    Google Scholar 

  22. P. Pantel and M. Pennacchiotti, “Espresso: leveraging generic patterns for automatically harvesting semantic relations,” in Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the Association for Computational Linguistics, 2006.

    Google Scholar 

  23. M. Barbareschi, E. Battista, N. Mazzocca, and S. Venkatesan, “A hardware accelerator for data classification within the sensing infrastructure,” in Information Reuse and Integration (IRI), 2014 IEEE 15th International Conference on. IEEE, 2014, pp. 400–405.

    Google Scholar 

  24. M. Barbareschi, “Implementing hardware decision tree prediction: a scalable approach,” in 2016 30th International Conference on Advanced Information Networking and Applications Workshops (WAINA). IEEE, 2016, pp. 87–92.

    Google Scholar 

  25. M. Barbareschi, A. De Benedictis, A. Mazzeo, and A. Vespoli, “Providing mobile traffic analysis as-a-service: Design of a service-based infrastructure to offer high-accuracy traffic classifiers based on hardware accelerators,” Journal of Digital Information Management, vol. 13, no. 4, p. 257, 2015.

    Google Scholar 

  26. G. Sannino, P. Melillo, G. De Pietro, S. Stranges, and L. Pecchia, To What Extent It Is Possible to Predict Falls due to Standing Hypotension by Using HRV andWearable Devices? Study Design and Preliminary Results from a Proof-of-Concept Study. Cham: Springer International Publishing, 2014, pp. 167–170.

    Google Scholar 

  27. N. Brancati, G. Caggianese, M. Frucci, L. Gallo, and P. Neroni, “Touchless target selection techniques for wearable augmented reality systems,” in Intelligent Interactive Multimedia Systems and Services. Springer, 2015, pp. 1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flora Amato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Amato, F., Cozzolino, G., Mazzeo, A., Romano, S. (2017). An Architecture for processing of Heterogeneous Sources. In: Xhafa, F., Barolli, L., Amato, F. (eds) Advances on P2P, Parallel, Grid, Cloud and Internet Computing. 3PGCIC 2016. Lecture Notes on Data Engineering and Communications Technologies, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-49109-7_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49109-7_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49108-0

  • Online ISBN: 978-3-319-49109-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics