Skip to main content

Evolutionary Discovery of Multi-relational Association Rules from Ontological Knowledge Bases

  • Conference paper
  • First Online:
Knowledge Engineering and Knowledge Management (EKAW 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10024))

Included in the following conference series:

Abstract

In the Semantic Web, OWL ontologies play the key role of domain conceptualizations, while the corresponding assertional knowledge is given by the heterogeneous Web resources referring to them. However, being strongly decoupled, ontologies and assertional knowledge can be out of sync. In particular, an ontology may be incomplete, noisy, and sometimes inconsistent with the actual usage of its conceptual vocabulary in the assertions. Despite of such problematic situations, we aim at discovering hidden knowledge patterns from ontological knowledge bases, in the form of multi-relational association rules, by exploiting the evidence coming from the (evolving) assertional data. The final goal is to make use of such patterns for (semi-)automatically enriching/completing existing ontologies. An evolutionary search method applied to populated ontological knowledge bases is proposed for the purpose. The method is able to mine intensional and assertional knowledge by exploiting problem-aware genetic operators, echoing the refinement operators of inductive logic programming, and by taking intensional knowledge into account, which allows to restrict the search space and direct the evolutionary process. The discovered rules are represented in SWRL, so that they can be straightforwardly integrated within the ontology, thus enriching its expressive power and augmenting the assertional knowledge that can be derived from it. Discovered rules may also suggest new (schema) axioms to be added to the ontology. We performed experiments on publicly available ontologies, validating the performances of our approach and comparing them with the main state-of-the-art systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By ontological knowledge base, we refer to a populated ontology, namely an ontology where both the schema and instance level are specified. The expression will be interchangeably used with the term ontology.

  2. 2.

    The results is a KB with an enriched expressive power. More complex relationships than subsumption can be expressed. For details see [13].

  3. 3.

    When added to an ontology, DL-safe rules are decidable and generate sound results but not necessarily complete.

  4. 4.

    As remarked in [15], the satisfiability check is useful only if disjointness axioms occur in the ontology. This check can be omitted (thus saving computational cost) if no disjointness axioms occur.

  5. 5.

    http://www.cs.put.poznan.pl/alawrynowicz/financial.owl.

  6. 6.

    http://www.biopax.org/release/biopax-level2.owl.

  7. 7.

    http://www.semanticbible.com/ntn/ntn-view.html.

References

  1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Proceedings of the International Conference on Management of Data, pp. 207–216. ACM Press (1993)

    Google Scholar 

  2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Univ. Press, Cambridge (2003)

    MATH  Google Scholar 

  3. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 28–37 (2001)

    Google Scholar 

  4. d’Amato, C., Staab, S., Tettamanzi, A., Tran, M., Gandon, F.: Ontology enrichment by discovering multi-relational association rules from ontological knowledge bases. In: Proceedings of SAC 2016. ACM (2016)

    Google Scholar 

  5. DeJong, K.: Evolutionary Computation: A Unified Approach. MIT Press, Cambridge (2002)

    Google Scholar 

  6. Divina, F.: Hybrid genetic relational search for inductive learning. Ph.D. thesis, Vrije Universiteit Amsterdam (2004)

    Google Scholar 

  7. Divina, F.: Genetic Relational Search for Inductive Concept Learning: A Memetic. LAP LAMBERT Academic Publishing, Saarbrücken (2010)

    Google Scholar 

  8. Divina, F., Marchiori, E.: Evolutionary concept learning. In: Langdon, W.B. et al. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, New York, USA, 9–13 July 2002, pp. 343–350. Morgan Kaufmann (2002)

    Google Scholar 

  9. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  10. Fanizzi, N., d’Amato, C., Esposito, F.: Learning with kernels in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 210–225. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.: AMIE: association rule mining under incomplete evidence in ontological knowledge bases. In: Proceedings of the 22th International Conference on World Wide Web (WWW 2013), pp. 413–422. ACM (2013)

    Google Scholar 

  12. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.: Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24(6), 707–730 (2015)

    Article  Google Scholar 

  13. Horrocks, I., Patel-Schneider, P.F.: A proposal for an OWL rules language. In: Proceedings of the International Conference on World Wide Web, pp. 723–731. ACM (2004)

    Google Scholar 

  14. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: a semantic web rule language combining OWL and RuleML (2004). https://www.w3.org/Submission/SWRL/

  15. Józefowska, J., Lawrynowicz, A., Lukaszewski, T.: The role of semantics in mining frequent patterns from knowledge bases in description logics with rules. Theor. Pract. Logic Program. 10(3), 251–289 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lisi, F.A.: AL-QuIn: an onto-relational learning system for semantic web mining. Int. J. Semant. Web Inf. Syst. 7(3), 1–22 (2011)

    Article  MathSciNet  Google Scholar 

  17. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. Web Semant. 3(1), 41–60 (2005)

    Article  Google Scholar 

  18. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics. J. Artif. Intell. Res. 36, 165–228 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Muggleton, S., Tamaddoni-Nezhad, A.: QG/GA: a stochastic search for progol. Mach. Learn. 70(2–3), 121–133 (2008)

    Article  Google Scholar 

  20. Mühlenbein, H., Schlierkamp-Voosen, D.: The science of breeding, its application to the breeder genetic algorithm (BGA). Evol. Comput. 1(4), 335–360 (1993). Winter

    Article  Google Scholar 

  21. Reiser, P.G.K., Riddle, P.J.: Scaling up inductive logic programming: an evolutionary wrapper approach. Appl. Intell. 15(3), 181–197 (2001)

    Article  MATH  Google Scholar 

  22. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. Web Semant. 5(2), 51–53 (2007)

    Article  Google Scholar 

  23. Tamaddoni-Nezhad, A., Muggleton, S.H.: A genetic algorithms approach to ILP. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 285–300. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia d’Amato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

d’Amato, C., Tettamanzi, A.G.B., Minh, T.D. (2016). Evolutionary Discovery of Multi-relational Association Rules from Ontological Knowledge Bases. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds) Knowledge Engineering and Knowledge Management. EKAW 2016. Lecture Notes in Computer Science(), vol 10024. Springer, Cham. https://doi.org/10.1007/978-3-319-49004-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49004-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49003-8

  • Online ISBN: 978-3-319-49004-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics