Skip to main content

Robust Fault Detection Filter Design for Discrete-Time Fuzzy Models

  • Conference paper
  • First Online:
Recent Advances in Electrical Engineering and Control Applications (ICEECA 2016)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 411))

  • 1271 Accesses

Abstract

This New fault detection observer design conditions for discrete-time fuzzy systems with unmeasurable premise variables are proposed. In this study, the considered Takagi-Sugeno (T-S) fuzzy system is subject to sensor faults and unknown bounded disturbances. The T-S observer is used to estimate jointly states and faults by means of a mixed \( H_{ - } /H_{\infty } \) performance index. Using the technique of descriptor system representation new conditions are proposed in terms of a Linear Matrix Inequality (LMI) by considering the sensor fault as an auxiliary state variable. Simulation results are presented to demonstrate the effectiveness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liang, W.J., Yang, G.-H., Liu, J.: An LMI approach to H index and mixed H/H fault detection observer design. Automatica 43, 1656–1665 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Zhong, M., Ding, S.X., Lam, J., Wang, H.: An LMI approach to design robust fault filter for uncertain LTI systems. Automatica 39, 543–550 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gao, Z., Shi, X., Ding, S.-X.: Fuzzy state-disturbance observer design for T-S fuzzy systems with application to sensor fault estimation. IEEE Trans. SMC Part B 38(3), 875–880 (2008)

    Google Scholar 

  4. Jaimoukha, I.M., Li, Z.: A matrix factorization solution to the H/H fault detection problem. Automatica 42, 1907–1912 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gao, Z., Ding, S.: Actuator fault robust estimation and fault tolerant control for a class of nonlinear descriptor systems. Automatica 43, 912–920 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aouaouda, S., Chadli, M., Cocquempot, V., Khadir, M.T.: Multi-objective H/H fault detection observer design for Takagi-Sugeno fuzzy systems with unmeasurable premise variables: descriptor approach. Int. J. Adapt. Control Signal Process. 27(12), 1031–1047 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yuesheng, L., Xinping, G.: Robust fault tolerant H2/H controller design based on state feedback. In: Proceedings of IEEE International Conference on Automation and Logistics, Hong Kong and Macau, pp. 643–647 (2010)

    Google Scholar 

  8. Ding, B.C.: Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi–Sugeno’s form. Automatica 45(5), 2093–2098 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fang, C.H., Liu, Y.S., Kau, S.W., Hong, L., Lee, C.H.: A new LMI-based approach to relaxed quadratic stabilization of T-S fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(3), 386–397 (2006)

    Article  Google Scholar 

  10. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear matrix inequalities. In: System and Control Theory. SIAM Studies in Applied Mathematics, SIAM, Philadelphia, PA, USA, vol. 15 (1994)

    Google Scholar 

  11. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2001)

    Book  Google Scholar 

  12. Yoneyama, J.: H filtering for fuzzy systems with immeasurable premise variables: an uncertain system approach. Fuzzy Sets Syst. 160(12), 1738–1748 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chadli, M., Hajjaji, A.E.: Comment on observer-based robust fuzzy control of nonlinear systems with parametric uncertainties. Fuzzy Sets Syst. 157, 1276–1281 (2006)

    Article  MATH  Google Scholar 

  14. Mozelli, L.A., Palhares, R.M.: Less conservative H fuzzy control for discrete-time Takagi-Sugeno systems. Math. Prob. Eng. (2011). doi:10.1155/2011/361640

  15. Aouaouda, S., Chadli, M., Karimi, H.R., Shi, P.: Robust fault tolerant tracking controller design for a VTOL aircraft. J. Franklin Inst. 9, 2627–2645 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Chadli, M., Karimi, H.R., Shi, P.: On stability and stabilization of singular uncertain Takagi-Sugeno fuzzy systems. J. Franklin Inst. 351(3), 1453–1463 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Chadli .

Editor information

Editors and Affiliations

Appendix A

Appendix A

The following Lemmas are required in the development of the Theorem 1 proof.

Lemma A.1.

If \( \Phi > 0 \), then

$$ \Xi _{\text{i}}^{\text{T}}\Phi \Xi _{\text{j}} +\Xi _{\text{j}}^{\text{T}} {\Phi} {\Xi }_{\text{i}} \le\Xi _{\text{i}}^{\text{T}} {\Phi} {\Xi }_{\text{i}} +\Xi _{\text{j}}^{\text{T}} {\Phi} {\Xi }_{\text{j}} $$
(A.1)

Lemma A.2.

if \( {\text{Z}} > 0 \), then

$$ {\text{SZ}}^{ - 1} {\text{S}}^{\text{T}} \ge {\text{S}}^{\text{T}} + {\text{S}} - {\text{Z}} $$
(A.2)

Lemma A.3 [13].

Consider two real matrices X and Y with appropriate dimensions, for any positive scalar \( \Omega \) the following inequality is verified:

$$ {\text{X}}^{\text{T}} {\text{Y}} + {\text{Y}}^{\text{T}} {\text{X}} \le {\text{X}}^{\text{T}}\Omega {\text{X}} + {\text{Y}}^{\text{T}}\Omega ^{ - 1} {\text{Y}}\quad\Omega > 0 $$
(A.3)

Lemma B [14].

Consider the system (B.1). If there exist symmetric matrices \( {\text{X}}_{\text{i}} \) and any matrices \( {\text{L}} \), such that the following stability conditions are satisfied for \( {\text{i}},{\text{j}},{\text{l}} = 1, \cdots ,{\text{r}} \)

$$ \Pi _{\text{l}} < 0, {\text{X}}_{\text{i}} > 0, \quad (i,l \in {\mathcal{R}}) $$
(B.1)

where

$$ \Pi _{\text{l}} = \left[ {\begin{array}{*{20}c} {{\mathcal{Q}}_{{11{\text{l}}}} } & * & \cdots & * \\ {{\mathcal{Q}}_{{21{\text{l}}}} } & {{\mathcal{Q}}_{{22{\text{l}}}} } & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ {{\mathcal{Q}}_{{{\text{r}}1{\text{l}}}} } & {{\mathcal{Q}}_{{{\text{r}}2{\text{l}}}} } & \cdots & {{\mathcal{Q}}_{\text{rrl}} } \\ \end{array} } \right] $$
(B.2)
$$ {\mathcal{Q}}_{\text{ijl}} = \left[ {\begin{array}{*{20}c} {\frac{1}{2}\left( {\Gamma _{\text{i}} +\Gamma _{\text{j}} } \right)} & * \\ {\frac{1}{2}\left( {{\text{A}}_{\text{i}} + {\text{A}}_{\text{j}} } \right){\text{L}}} & { - {\text{X}}_{\text{l}} } \\ \end{array} } \right] $$
(B.3)
$$ \Gamma _{\text{i}} = {\text{X}}_{\text{i}} - {\text{L}}^{\text{T}} - {\text{L}} $$
(B.4)

Then the closed loop fuzzy model is globally asymptotically stable.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Aouaouda, S., Chadli, M. (2017). Robust Fault Detection Filter Design for Discrete-Time Fuzzy Models. In: Chadli, M., Bououden, S., Zelinka, I. (eds) Recent Advances in Electrical Engineering and Control Applications. ICEECA 2016. Lecture Notes in Electrical Engineering, vol 411. Springer, Cham. https://doi.org/10.1007/978-3-319-48929-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48929-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48928-5

  • Online ISBN: 978-3-319-48929-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics