Skip to main content

Structure and Function of the Reaction Centre – Light Harvesting 1 Core Complexes from Purple Photosynthetic Bacteria

  • Chapter
  • First Online:
Photosynthesis: Structures, Mechanisms, and Applications

Summary

Reaction centre-light harvesting 1 core complex is a fundamental unit in photosynthetic bacterium. It is the place where light energy is collected and used to power photosynthetic redox reaction, leading to the synthesis of ATP ultimately. The reaction centre is surrounded by elliptical LH1 complex. The subunit of the LH1 ring is a heterodimer of α-, β-polypeptide pair, to which pigment molecules, BChl a or BChl b and carotenoid are non-covalently bonded. There are at least three different types of the RC-LH1 core complexes found in photosynthetic bacteria so far. The core complex from Rps. palustris is a monomer. Its LH1 ring consists of 15 pairs of α/β-polypeptide with an extra protein ‘W’ located between two α-polypeptides, forming an incomplete ring. The gap of the LH1 ring was proposed as a gate to facilitate quinone/quinol exchange between reaction centre and cytochrome bc1 complex. A dimeric core complex was found in PufX-containing species, such as Rba. sphaerides. Two RCs are associated by 28 α/β-apoprotein pairs and two pufX proteins, forming an S-shaped RC-LH1-PufX core complex. The pufX protein causes incomplete LH1 ring and dimerization of the core complex. Monomeric RC-LH1 from Tch. tepidum has a complete elliptical LH1 ring that is composed of 16 pair α/β-apoprotein pairs without pufX-like protein. Sixteen Ca2+ are coordinated on C-terminal region of the α/β-polypeptide to stabilize the core complex and cause BChl a Qy absorption redshift to 915 nm. Carotenoid, spirilloxthanin contacts with α/β-apoproteins intimately to form an inter subunit interaction within the core complex, providing a further stability of the complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aird A, Wrachtrup J, Schulten K, Tietz C (2007) Possible pathway for ubiquinone shuttling in Rhodospirillum rubrum revealed by molecular dynamics simulation. Biophys J 92: 23–33

    Article  CAS  PubMed  Google Scholar 

  • Akahane J, Rondonuwu FS, Fiedor L, Watanabe Y, Koyama Y (2004) Dependence of singlet-energy transfer on the conjugation length of carotenoids reconstituted into the LH1 complex from Rhodospirillum rubrum G9. Chem Phys Lett 393: 184–191

    Article  CAS  Google Scholar 

  • Allen JF, Holmes NG (1986) A general model for regulation of photosynthetic unit function by protein phosphorylation. FEBS Lett 202: 175–181

    Article  CAS  Google Scholar 

  • Ashby MK, Coomber SA, Hunter CN (1987) Cloning, nucleotide sequence and transfer of genes for the B800-850 light harvesting complex of Rhodobacter sphaeroides. FEBS Lett 213: 245–248

    Article  CAS  Google Scholar 

  • Bahatyrova S, Frese RN, Siebert CA, Olsen JD, van der Werf KO, van Grondelle R, Niederman RA, Bullough PA, Otto C, Hunter CN (2004) The native architecture of a photosynthetic membrane. Nature 430: 1058–1062

    Article  CAS  PubMed  Google Scholar 

  • Barz WP, Francia F, Venturoli G, Melandri BA, Vermeglio A, Oesterhelt D (1995a) Role of PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 1. PufX is required for efficient light-driven electron transfer and photophosphorylation under anaerobic conditions. Biochemistry 34: 15235–15247

    Article  CAS  PubMed  Google Scholar 

  • Barz WP, Vermeglio A, Francia F, Venturoli G, Melandri BA, Oesterhelt D (1995b) Role of the PufX protein in photosynthetic growth of the Rhodobacter sphaeroides. 2. PufX is required for efficient ubiquinone/ubiquinol exchange between the reaction center QB site and the cytochrome bc1 complex Biochemistry 34: 15248–15258

    Google Scholar 

  • Blankenship RE (2014) Molecular mechanisms of photosynthesis John Wiley & Sons, Oxford, U.K.

    Google Scholar 

  • Boonstra AF, Germeroth L, Boekema EJ (1994) Structure of the light-harvesting antenna from Rhodospirillum molischianum studied by electron microscopy. Biochim Biophys Acta 1184: 227–234

    Article  CAS  Google Scholar 

  • Brunisholz RA, Zuber H (1992) Structure, function and organization of antenna polypeptides and antenna complexes from the three families of Rhodospirillaneae. J Photoch Photobio B 15: 113–140

    Article  CAS  Google Scholar 

  • Bullough PA, Qian P, Hunter CN (2008) Reaction Center-Light-Harvesting Core Complexes of Purple Bacteria. In The Purple Phototrophic Bacteria, Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) pp 155–179. Springer Netherlands

    Google Scholar 

  • Bustamante PL, Loach PA (1994) Reconstitution of a functional photosynthetic receptor complex with isolated subunits of core light-harvesting complex and reaction centers. Biochemistry 33: 13329–13339

    Article  CAS  PubMed  Google Scholar 

  • Chang CH, Tiede D, Tang J, Smith U, Norris J, Schiffer M (1986) Structure of Rhodopseudomonas sphaeroides R-26 reaction center. FEBS Lett 205: 82–86

    Article  CAS  PubMed  Google Scholar 

  • Chang MC, Callahan PM, Parkes-Loach PS, Cotton TM, Loach PA (1990a) Spectroscopic characterization of the light-harvesting complex of Rhodospirillum rubrum and its structural subunit. Biochemistry 29: 421–429

    Article  CAS  PubMed  Google Scholar 

  • Chang MC, Meyer L, Loach PA (1990b) Isolation and characterization of a structural subunit from the core light-harvesting complex of Rhodobacter sphaeroides 2.4.1 and puc 705-BA. PhotochemPhotobiol 52: 873–881

    CAS  Google Scholar 

  • Chi SC, Mothersole DJ, Dilbeck P, Niedzwiedzki DM, Zhang H, Qian P, Vasilev C, Grayson KJ, Jackson PJ, Martin EC, Li Y, Holten D, Hunter CN (2015) Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway. Biochim Biophys Acta 1847: 189–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cogdell RJ, Frank HA (1987) How carotenoids function in photosynthetic bacteria. Biochim Biophys Acta 895: 63–79

    Article  CAS  PubMed  Google Scholar 

  • Cogdell RJ, Fyfe PK, Barrett SJ, Prince SM, Freer AA, Isaacs NW, McGlynn P, Hunter CN (1996) The purple bacterial photosynthetic unit. Photosynth Res 48: 55–63

    Article  CAS  PubMed  Google Scholar 

  • Cogdell RJ, Gall A, Kohler J (2006) The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q Rev Biophys 39: 227–324

    Article  CAS  PubMed  Google Scholar 

  • Conroy MJ, Westerhuis WH, Parkes-Loach PS, Loach PA, Hunter CN, Williamson MP (2000) The solution structure of Rhodobacter sphaeroides LH1beta reveals two helical domains separated by a more flexible region: structural consequences for the LH1 complex. J Mol Biol 298: 83–94

    Article  CAS  PubMed  Google Scholar 

  • Coomber SA, Chaudhri M, Connor A, Britton G, Hunter CN (1990) Localized transposon Tn 5 mutagenesis of the photosynthetic gene cluster of Rhodobacter sphaeroides. Mol Microbiol 4: 977–989

    Article  CAS  PubMed  Google Scholar 

  • Davis CM, Bustamante PL, Loach PA (1995) Reconstitution of the bacterial core light-harvesting complexes of Rhodobacter sphaeroides and Rhodospirillum rubrum with isolated α- and β-polypeptides, bacteriochlorophyll a, and carotenoid. J Biol Chem 270: 5793–5804

    Article  CAS  PubMed  Google Scholar 

  • Davis CM, Parkes-Loach PS, Cook CK, Meadows KA, Bandilla M, Scheer H, Loach PA (1996) Comparison of the structural requirements for bacteriochlorophyll binding in the core light-harvesting complexes of Rhodospirillum rubrum and Rhodobacter sphaeroides using reconstitution methodology with bacteriochlorophyll analogs. Biochemistry 35: 3072–3084

    Article  CAS  PubMed  Google Scholar 

  • Davis CM, Bustamante PL, Todd JB, Parkes-Loach PS, McGlynn P, Olsen JD, McMaster L, Hunter CN, Loach PA (1997) Evaluation of structure-function relationships in the core light-harvesting complex of photosynthetic bacteria by reconstitution with mutant polypeptides. Biochemistry 36: 3671–3679

    Article  CAS  PubMed  Google Scholar 

  • DeHoff BS, Lee JK, Donohue TJ, Gumport RI, Kaplan S (1988) In vivo analysis of puf operon expression in Rhodobacter sphaeroides after deletion of a putative intercistronic transcription terminator. J Bacteriol 170: 4681–4692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deisenhofer J, Michel H (1989) The photosynthetic reaction centre from the purple bacterium Rhodospeudomonas viridis. EMBO J 8: 2149–2170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature 318: 618–624

    Article  CAS  PubMed  Google Scholar 

  • Ermler U, Fritzsch G, Buchanan SK, Michel H (1994) Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Å resolution: cofactors and protein-cofactor interactions. Structure 2: 925–936

    Article  CAS  PubMed  Google Scholar 

  • Esser L, Elberry M, Zhou F, Yu CA, Yu L, Xia D (2008) Inhibitor-complexed structures of the cytochrome bc1 from the photosynthetic bacterium Rhodobacter sphaeroides. J Biol Chem 283: 2846–57

    Article  CAS  PubMed  Google Scholar 

  • Farchaus JW, Oesterhelt D (1989) A Rhodobacter sphaeroides pufL, M and X deletion mutant and its complementation in trans with a 5.3 Kb puf operon shuttle fragment. EMBO J 8: 47–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fiedor L, Scheer H (2005) Trapping of an assembly intermediate of photosynthetic LH1 antenna beyond B820 subunit. Significance for the assembly of photosynthetic LH1 antenna. J Biol Chem 280: 20921–6

    Article  CAS  PubMed  Google Scholar 

  • Francia F, Wang J, Venturoli G, Melandri BA, Barz WP, Oesterhelt D (1999) The reaction center-LH1 antenna complex of Rhodobacter sphaeroides contains one PufX molecule which is involved in dimerization of this complex. Biochemistry 38: 6834–6845

    Article  CAS  PubMed  Google Scholar 

  • Francia F, Wang J, Zischka H, Venturoli G, Oesterhelt D (2002) Role of the N- and C-terminal regions of the PufX protein in the structural organization of the photosynthetic core complex of Rhodobacter sphaeroides. European Journal of Biochemistry 269: 1877–1885

    Article  CAS  PubMed  Google Scholar 

  • Frank HA, Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63: 257–264

    Article  CAS  PubMed  Google Scholar 

  • Frese RN, Olsen JD, Branvall R, Westerhuis WH, Hunter CN, van Grondelle R (2000) The long-range supraorganization of the bacterial photosynthetic unit: A key role for PufX. Proc Natl Acad Sci USA 97: 5197–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulcher TK, Beatty JT, Jones MR (1998) Demonstration of the key role played by the PufX protein in the functional and structural organization of native and hybrid bacterial photosynthetic core complexes. J Bacteriol 180: 642–646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heller BA, Loach PA (1990) Isolation and characterization of a subunit form of the B875 light-harvesting complex from Rhodobacter capsulatus Photochem Photobiol 51: 621–627

    Article  CAS  PubMed  Google Scholar 

  • Holden-Dye K, Crouch LI, Jones MR (2008) Structure, function and interactions of the PufX protein. Biochim Biophys Acta 1777: 613–30

    Article  CAS  PubMed  Google Scholar 

  • Hunter CN, Daldal F, Thurnauer MC, Beatty JT (2009) The Purple Phototrophic Bacteria. Springer, Dordrecht: 1013

    Google Scholar 

  • Imhoff JF, Truper HG, Pfennig N (1984) Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria”. Int J Syst Bacteriol 34: 340–343

    Article  Google Scholar 

  • Jamieson SJ, Wang P, Qian P, Kirkland JY, Conroy MJ, Hunter CN, Bullough PA (2002) Projection structure of the photosynthetic reaction centre-antenna complex of Rhodospirillum rubrum at 8.5 Å resolution. EMBO J 21: 3927–3935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jay F, Lambillotte M, Stark W, Muhlethaler K (1984) The Preparation and Characterization of Native Photoreceptor Units from the Thylakoids of Rhodopseudomonas-viridis. EMBO J 3: 773–776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jirsakova V, Reiss-Husson F (1993) Isolation and characterization of the core light-harvesting complex B875 and its subunit form, B820, from Rhodocyclus gelatinosus. Biochim Biophys Acta 1183: 301–308

    Article  CAS  Google Scholar 

  • Jungas C, Ranck JL, Rigaud JL, Joliot P, VermÇglio A (1999) Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides. EMBO J 18: 534–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karrasch S, Bullough PA, Ghosh R (1995) The 8.5 Å projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J 14: 631–638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kehoe JW, Meadows KA, Parkes-Loach PS, Loach PA (1998) Reconstitution of core light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides. 2. Determination of structural features that stabilize complex formation and their implications for the structure of the subunit complex. Biochemistry 37: 3418–3428

    Article  CAS  PubMed  Google Scholar 

  • Kerfeld CA, Yeates TO, Thornber JP (1994) Biochemical and spectroscopic characterization of the reaction-center LH1 complex and the carotenoid-containing B820 subunit of Chromatium purpuratum. Biochim Biophys Acta 1185: 193–202

    Article  CAS  PubMed  Google Scholar 

  • Khoo HE, Prasad KN, Kong KW, Jiang YM, Ismail A (2011) Carotenoids and Their Isomers: Color Pigments in Fruits and Vegetables. Molecules 16: 1710–1738

    Article  CAS  PubMed  Google Scholar 

  • Koepke J, Hu XC, Muenke C, Schulten K, Michel H (1996) The crystal structure of the light-harvesting complex II (B800-B850) from Rhodospirillum molischanum. Structure 4: 581–597

    Article  CAS  PubMed  Google Scholar 

  • Lee JK, DeHoff BS, Donohue TJ, Gumport RI, Kaplan S (1989) Transcriptional analysis of puf operon expression in Rhodobacter sphaeroides 2.4.1. and an intercistronic transcription terminator mutant. J Biol Chem 264: 19354–19365

    CAS  PubMed  Google Scholar 

  • Lilburn TG, Beatty JT (1992) Suppressor mutants of the photosynthetically incompetent pufX deletion mutant Rhodobacter capsulatus D RC6(pTL2). FEMS Microbiol Lett 100: 155–159

    CAS  Google Scholar 

  • Lilburn TG, Haith CE, Prince RC, Beatty JT (1992) Pleiotropic effects of pufX gene deletion on the structure and function of the photosynthetic apparatus of Rhodobacter capsulatus. Biochim Biophys Acta 1100: 160–170

    Article  CAS  PubMed  Google Scholar 

  • Loach PA, Parkes-Loach PS (1995) Structure-function relationships in core light-harvesting compelxes (LHI) as determined by characterization of the structural subunit and by reconstitution experiments. In Anoxygenic Photosynthetic Bacteria, Blankenship RE, Madigan MT, Bauer CE (eds) pp 433–471. The Netherlands: Kluwer Academic Publishers

    Google Scholar 

  • McAuley KE, Fyfe PK, Cogdell RJ, Isaacs N, Jones MR (1999) Structural details of an interaction between cardiolipin and an integral membrane protein. Proc Natl Acad Sci USA 96: 14706–14711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    Article  CAS  Google Scholar 

  • McGlynn P, Hunter CN, Jones MR (1994) The Rhodobacter sphaeroides PufX protein is not required for photosynthetic competence in the absence of a light harvesting system. FEBS Lett 349: 349–353

    Article  CAS  PubMed  Google Scholar 

  • McGlynn P, Westerhuis WH, Jones MR, Hunter CN (1996) Consequences for the organisation of reaction center-light harvesting antenna 1 (LH1) core complexes of Rhodobacter sphaeroides arising form deletion of amino acid residues at the C terminus of the LH1 α polypeptide. J Biol Chem 271: 3285–3292

    Article  CAS  PubMed  Google Scholar 

  • Meckenstock RU, Brunisholz RA, Zuber H (1992) The light-harvesting core-complex and the B820-subunit from Rhodopseudomonas marina.1. Purification and characterization. FEBS Lett 311: 128–134

    Article  CAS  PubMed  Google Scholar 

  • Milford AD, Achenbach LA, Jung DO, Madigan MT (2000) Rhodobaca bogoriensis gen. nov and sp nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes. Arch Microbiol 174: 18–27

    Article  CAS  PubMed  Google Scholar 

  • Miller KR (1979) Structure of a bacterial photosynthetic membrane. Proc Natl Acad Sci USA 76: 6415–6419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller KR (1982) 3-Dimensional Structure of a Photosynthetic Membrane. Nature 300: 53–55

    Article  CAS  Google Scholar 

  • Miller JF, Hinchigeri SB, Parkes-Loach PS, Callahan PM, Sprinkle JR, Riccobono JR, Loach PA (1987) Isolation and characterization of a subunit form of the light-harvesting complex of Rhodospirillum rubrum. Biochemistry 26: 5055–5062

    Article  CAS  PubMed  Google Scholar 

  • Ng IW (2008) A structural and functional study of the RC-LH1-PufX core complex from Rhodobacter sphaeroides. In University of Sheffield

    Google Scholar 

  • Niwa S, Yu LJ, Takeda K, Hirano Y, Kawakami T, Wang-Otomo ZY, Miki K (2014) Structure of the LH1-RC complex from Thermochromatium tepidum at 3.0 Å. Nature 508: 228–32

    Article  CAS  PubMed  Google Scholar 

  • Nogi T, Fathir I, Kobayashi M, Nozawa T, Miki K (2000) Crystal structures of photosynthetic reaction center and high-potential iron-sulfur protein from Thermochromatium tepidum: thermostability and electron transfer. Proc Natl Acad Sci USA 97: 13561–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen JD, Sockalingum GD, Robert B, Hunter CN (1994) Modification of a hydrogen bond to a bacteriochlorophyll a molecule in the light harvesting 1 antenna of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 91: 7124–7128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen JD, Sturgis JN, Westerhuis WH, Fowler GJS, Hunter CN, Robert B (1997) Site-directed modification of the ligands to the bacteriochlorophylls of the light-harvesting LH1 and LH2 complexes of Rhodobacter sphaeroides. Biochemistry 36: 12625–12632

    Article  CAS  PubMed  Google Scholar 

  • Paddock ML, Weber KH, Chang C, Okamura MY (2005) Interactions between Cytochrome c2 and the Photosynthetic Reaction Center from Rhodobacter sphaeroides: The Cation-Pi Interaction. Biochemistry 44: 9619–9625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkes-Loach PS, Michalski TJ, Bass WJ, Smith U, Loach PA (1990) Probing the bacteriochlorophyll binding site by reconstitution of the light-harvesting complex of Rhodospirillum rubrum with bacteriochlorophyll a analogues. Biochemistry 29: 2951–2960

    Article  CAS  PubMed  Google Scholar 

  • Parkes-Loach PS, Jones SM, Loach PA (1994) Probing the structure of the core light-harvesting complex (LH1) of Rhodopseudomonas viridis by dissociation and reconstitution methodology. Photosynth Res 40: 247–261

    Article  CAS  PubMed  Google Scholar 

  • Parkes-Loach PS, Law CJ, Recchia PA, Kehoe J, Nehrlich S, Chen J, Loach PA (2001) Role of the core region of the PufX protein in inhibition of reconstitution of the core light-harvesting complexes of Rhodobacter sphaeroides and Rhodobacter capsulatus. Biochemistry 40: 5593–5601

    Article  CAS  PubMed  Google Scholar 

  • Polivka T, Frank HA (2010) Molecular Factors Controlling Photosynthetic Light Harvesting by Carotenoids. Accounts Chem Res 43: 1125–1134

    Article  CAS  Google Scholar 

  • Pugh RJ, McGlynn P, Jones MR, Hunter CN (1998) The LH1-RC core complex of Rhodobacter sphaeroides: interaction between components, time-dependent assembly, and topology of the PufX protein. Biochim Biophys Acta 1366: 301–316

    Article  CAS  PubMed  Google Scholar 

  • Qian P, Saiki K, Mizoguchi T, Hara K, Sashima T, Fujii R, Koyama Y (2001) Time-dependent changes in the carotenoid composition and preferential binding of spirilloxanthin to the reaction center and anhydrorhodovibrin to the LH1 antenna complex in Rhodobium marinum. Photochem Photobiol 74: 444–452

    Article  CAS  PubMed  Google Scholar 

  • Qian P, Addlesee HA, Ruban AV, Wang P, Bullough PA, Hunter CN (2003) A reaction center-light-harvesting 1 complex (RC-LH1) from a Rhodospirillum rubrum mutant with altered esterifying pigments: characterization by optical spectroscopy and cryo-electron microscopy. J Biol Chem 278: 23678–85

    Article  CAS  PubMed  Google Scholar 

  • Qian P, Hunter CN, Bullough PA (2005) The 8.5Å projection structure of the core RC-LH1-PufX dimer of Rhodobacter sphaeroides. J Mol Biol 349: 948–60

    Article  CAS  PubMed  Google Scholar 

  • Qian P, Bullough PA, Hunter CN (2008) Three-dimensional reconstruction of a membrane-bending complex: the RC-LH1-PufX core dimer of Rhodobacter sphaeroides. J Biol Chem 283: 14002–11

    Article  CAS  PubMed  Google Scholar 

  • Qian P, Papiz MZ, Jackson PJ, Brindley AA, Ng IW, Olsen JD, Dickman MJ, Bullough PA, Hunter CN (2013) Three-dimensional structure of the Rhodobacter sphaeroides RC-LH1-PufX complex: dimerization and quinone channels promoted by PufX. Biochemistry 52: 7575–85

    Article  CAS  PubMed  Google Scholar 

  • Rastogi VK, Girvin ME (1999) Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402: 263–268

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe EC, Tunnicliffe RB, Ng IW, Adams PG, Qian P, Holden-Dye K, Jones MR, Williamson MP, Hunter CN (2011) Experimental evidence that the membrane-spanning helix of PufX adopts a bent conformation that facilitates dimerisation of the Rhodobacter sphaeroides RC-LH1 complex through N-terminal interactions. Biochim Biophys Acta 1807: 95–107

    Article  CAS  PubMed  Google Scholar 

  • Recchia PA, Davis CM, Lilburn TG, Beatty JT, Parkes-Loach PS, Hunter CN, Loach PA (1998) Isolation of the PufX protein from Rhodobacter capsulatus and Rhodobacter sphaeroides: Evidence for its interaction with the α-polypeptide of the core light-harvesting complex. Biochemistry 37: 11055–11063

    Article  CAS  PubMed  Google Scholar 

  • Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW, Cogdell RJ (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302: 1969–1972

    Article  CAS  PubMed  Google Scholar 

  • Scheuring S, Sturgis JN (2009) Atomic force microscopy of the bacterial photosynthetic apparatus: plain pictures of an elaborate machinery. Photosynth Res 102: 197–211

    Article  CAS  PubMed  Google Scholar 

  • Scheuring S, Francia F, Busselez J, Melandri BA, Rigaud JL, Levy D (2004a) Structural role of PufX in the dimerization of the photosynthetic core complex of Rhodobacter sphaeroides. J Biol Chem 279: 3620–6

    Article  CAS  PubMed  Google Scholar 

  • Scheuring S, Sturgis JN, Prima V, Bernadac A, Levy D, Rigaud JL (2004b) Watching the photosynthetic apparatus in native membranes. Proc Natl Acad Sci USA 101: 11293–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheuring S, Busselez J, Levy D (2005) Structure of the dimeric PufX-containing core complex of Rhodobacter blasticus by in situ atomic force microscopy. J Biol Chem 280: 1426–31

    Article  CAS  PubMed  Google Scholar 

  • Scheuring S, Goncalves RP, Prima V, Sturgis JN (2006) The photosynthetic apparatus of Rhodopseudomonas palustris: structures and organization. J Mol Biol 358: 83–96

    Article  CAS  PubMed  Google Scholar 

  • Semchonok DA, Chauvin JP, Frese RN, Jungas C, Boekema EJ (2012) Structure of the dimeric RC-LH1-PufX complex from Rhodobaca bogoriensis investigated by electron microscopy. Philos T R Soc B 367: 3412–3419

    Article  CAS  Google Scholar 

  • Siebert CA, Qian P, Fotiadis D, Engel A, Hunter CN, Bullough PA (2004) Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides: the role of PufX. EMBO J 23 690–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturgis JN, Olsen JD, Robert B, Hunter CN (1997) Functions of conserved tryptophan residues of the core light-harvesting complex of Rhodobacter sphaeroides. Biochemistry 36: 2772–2778

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Hirano Y, Kimura Y, Takaichi S, Kobayashi M, Miki K, Wang ZY (2007) Purification, characterization and crystallization of the core complex from thermophilic purple sulfur bacterium Thermochromatium tepidum. Biochim Biophys Acta 1767: 1057–63

    Article  CAS  PubMed  Google Scholar 

  • Takaichi S (1999) The Photochemistry of Carotenoids. In Carotenoids and Carotogenesis in Anoxygenic Photosynthetic Bacteria, Frank HA, Young AJ, Britton G, Cogdell RJ (eds) pp 39–69.

    Google Scholar 

  • Tsukatani Y, Matsuura K, Masuda S, Shimada K, Hiraishi A, Nagashima KVP (2004) Phylogenetic distribution of unusual triheme to tetraheme cytochrome subunit in the reaction center complex of purple photosynthetic bacteria. Photosynth Res 79: 83–91

    Article  CAS  PubMed  Google Scholar 

  • Tsukatani Y, Yamamoto H, Harada J, Yoshitomi T, Nomata J, Kasahara M, Mizoguchi T, Fujita Y, Tamiaki H (2013) An unexpectedly branched biosynthetic pathway for bacteriochlorophyll b capable of absorbing near-infrared light. Sci Rep-Uk 3

    Google Scholar 

  • Tunnicliffe RB, Ratcliffe EC, Hunter CN, Williamson MP (2006) The solution structure of the PufX polypeptide from Rhodobacter sphaeroides. FEBS Lett 580: 6967–71

    Article  CAS  PubMed  Google Scholar 

  • Vangrondelle R, Dekker JP, Gillbro T, Sundstrom V (1994) Energy-transfer and trapping in photosynthesis. Biochim Biophys Acta 1187: 1–65

    Article  Google Scholar 

  • Wang ZY, Muraoka Y, Shimonaga M, Kobayashi M, Nozawa T (2002) Selective Detection and Assignment of the Solution NMR Signals of Bacteriochlorophyll a in a Reconstituted Subunit of a Light-Harvesting Complex. Journal of the American Chemical Society 124: 1072–1078

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Suzuki H, Kobayashi M, Nozawa T (2007) Solution Structure of the Rhodobacter sphaeroides PufX Membrane Protein: Implications for the Quinone Exchange and Protein-Protein Interactions. Biochemistry 46: 3635–3642

    Article  CAS  PubMed  Google Scholar 

  • Westerhuis WH, Sturgis JN, Ratcliffe EC, Hunter CN, Niederman RA (2002) Isolation, size estimates, and spectral heterogeneity of an oligomeric series of light-harvesting 1 complexes from Rhodobacter sphaeroides. Biochemistry 41: 8698–8707

    Article  CAS  PubMed  Google Scholar 

  • Youvan DC, Alberti M, Begusch H, Bylina EJ, Hearst JE (1984a) Reaction center and light-harvesting I genes from Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 81: 189–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youvan DC, Bylina EJ, Alberti M, Begusch H, Hearst JE (1984b) Nucleotide and deduced polypeptide sequences of the photosynthetic reaction center, B870 antenna and flanking polypeptides from Rhodopseudomonas capsulata. Cell 37: 949–957

    Article  CAS  PubMed  Google Scholar 

  • Zhu YS, Kiley PJ, Donohue TJ, Kaplan S (1986) Origin of the mRNA stoichiometry of the puf operon in Rhodobacter sphaeroides. J Biol Chem 261: 10366–10374

    CAS  PubMed  Google Scholar 

  • Zuber H (1985) Structure and function of light-harvesting complexes and their polypeptides. Photochem Photobiol 42: 821–844

    Article  CAS  Google Scholar 

  • Zuber H, Cogdell RJ (1995) Structure and organization of purple bacterial antenna complexes. In Anoxygenic Photosynthetic Bacteria, Blankenship RE, Madigan MT, Bauer CE (eds) pp 315–348. The Netherlands: Kluwer Academic Publishers

    Google Scholar 

Download references

Acknowledgement

The author gratefully acknowledges funding from the Biotechnology and Biological Research Council, UK. Author also thanks Dr. Seiji Akimoto for his critical comments on the manuscript. Prof. Wang-Otomo Z.Y. provided absorption spectrum of purified core complex of Tch. tepidum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pu Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Qian, P. (2017). Structure and Function of the Reaction Centre – Light Harvesting 1 Core Complexes from Purple Photosynthetic Bacteria. In: Hou, H., Najafpour, M., Moore, G., Allakhverdiev, S. (eds) Photosynthesis: Structures, Mechanisms, and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-48873-8_2

Download citation

Publish with us

Policies and ethics