Skip to main content

Abstract

Hexagonal-closed packed materials (HCP) materials has attracted interest recently due to their unique physical and mechanical properties. The low density and the high strength to weight ratio of such materials make them excellent candidates to save structural weight and consequently fuel consumption in both automotive and aircraft fields. However, the deformation behavior of HCP metals hasn’t been completely understood as prior work still lack a detailed understanding on the activation of slip planes and twinning. In addition, the work-hardening behavior and the effect of temperature and strain rate are not yet well-established. This work aims at investigating the deformation mechanisms in magnesium single crystals using Multiscale Dislocation Dynamics Plasticity (MDDP) model. In particular, we focus on modeling the deformation behavior under c-axis compression loading. Several Simulations have been carried out to study the effect of dislocation mobility dependence on the dislocation character and its consequences on the evolution of the dislocation density, the dislocation microstructure, and the hardening behavior. Preliminary results show that the experimentally observed hardening behavior can be reproduced by using linear interpolation of the mobility such that screw segments are stationary and edge segments are highly mobile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avedesian M, Baker H, editors. ASM specialty handbook, magnesium and magnesium alloys. Materials Park, OH: ASM International; 1999.

    Google Scholar 

  2. Li, N., & Zheng, Y. (2013). Novel Magnesium Alloys Developed for Biomedical Application: A Review. Journal of Materials Science & Technology.

    Google Scholar 

  3. Partridge, P. G. (1967). The crystallography and deformation modes of hexagonal close-packed metals. International Materials Reviews, 12(1), 169–194.

    Article  Google Scholar 

  4. Reed-Hill, R.E., Robertson, W.D., 1957. Deformation of magnesium single crystals by nonbasal slip. Transactions of AIME 209, 496–502.

    Google Scholar 

  5. Obara, T., Yoshinga, H., Morozumi, S., 1973. {11–22}<1–1 23> slip systems in magnesium. Acta Metellurgica 21, 845–853.

    Article  Google Scholar 

  6. Stohr, J. F. and J. P. Poirier (1972). “Etude en Microscopie Electronique de Glissement Pyramidal {11–22} <11–23> dans le Magnesium.” Philosophy Magzine 25: 1313–1329.

    Article  Google Scholar 

  7. Seok Kim, G. (2011). Small volume investigation of slip and twinning in magnesium single crystals (Doctoral dissertation, Université de Grenoble).

    Google Scholar 

  8. Byer CM., Li B., Cao B., Ramesh KT., Microcompression of single-crystal magnesium, Scripta Mater., 2010:62:536

    Article  Google Scholar 

  9. Lilleodden, E. (2010). Microcompression study of Mg (0001) single crystal. Scripta Materialia, 62(8), 532–535.

    Article  Google Scholar 

  10. Ando S, Nakamura K, Takashima K and Tonda H, 1992, J. Japan Inst. of light metals, 42, 2845.

    Article  Google Scholar 

  11. Ando, S. and H. Tonda (2000). “Non-Basal Slip in Magnesium-Lithium Alloy Single Crystals.” Materials Transactions, JIM 41(9): 1188–1191.

    Article  Google Scholar 

  12. Ando, S., Tsushida, M., & Kitahara, H. (2010, October). Deformation Behavior of Magnesium Single Crystal in c-axis Compression and a-axis Tension. In Materials Science Forum (Vol. 654, pp. 699–702).

    Article  Google Scholar 

  13. Yoshinaga, H., Horiuchi, R., 1963. On the nonbasal slip in magnesium crystals. Trans. Jpn. Inst. Met. 5, 14–21.

    Article  Google Scholar 

  14. Molodov, K. D., Al-Samman, T., Molodov, D. A., & Gottstein, G. (2013). On the Ductility of Magnesium Single Crystals at Ambient Temperature. Metallurgical and Materials Transactions A, 1–7.

    Google Scholar 

  15. B. C. Wonsiewicz and W. A. Backofen: Trans. TMS-AIME, 1967, vol. 239, p. 1422.

    Google Scholar 

  16. Chapuis, A., & Driver, J. H. (2011). Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Materialia, 59(5), 1986–1994

    Article  Google Scholar 

  17. Li, Q. (2011). Dynamic mechanical response of magnesium single crystal under compression loading: Experiments, model, and simulations. Journal of Applied Physics, 109(10), 103514.

    Article  Google Scholar 

  18. Li, Q. (2013). Microstructure and deformation mechanism of 0001 magnesium single crystal subjected to quasistatic and high-strain-rate compressive loadings. Materials Science and Engineering: A, 568, 96–101.

    Article  Google Scholar 

  19. Syed, B., Geng, J., Mishra, R. K., & Kumar, K. S. (2012). [0001] Compression response at room temperature of single-crystal magnesium. Scripta Materialia, 67(7), 700–703.

    Article  Google Scholar 

  20. J. Geng, M.F. Chisholm, R.K. Mishra & K.S. Kumar (2014) The structure of 〈c + a〉 type dislocation loops in magnesium, Philosophical Magazine Letters, 94:6, 377–386

    Article  Google Scholar 

  21. Monnet, G., Devincre, B., & Kubin, L. P. (2004). Dislocation study of prismatic slip systems and their interactions in hexagonal close packed metals: application to zirconium. Acta materialia, 52(14), 4317–4328.

    Article  Google Scholar 

  22. Linder, T. (2009). Dislocation dynamics simulations.

    Google Scholar 

  23. Luque, A., Ghazisaeidi, M., & Curtin, W. A. (2013). Deformation modes in magnesium (0 0 0 1) and (011̄1) single crystals: simulations versus experiments. Modelling and Simulation in Materials Science and Engineering, 21(4), 045010.

    Article  Google Scholar 

  24. Guo, Y., Tang, X., Wang, Y., Wang, Z., & Yip, S. (2013). Compression deformation mechanisms at the nanoscale in magnesium single crystal. Acta Metallurgica Sinica (English Letters), 26(1), 75–84.

    Article  Google Scholar 

  25. H.M. Zbib and T.D. de la Rubia, Int. J. Plast. 18 (2002) p.1133.

    Article  Google Scholar 

  26. J.P. Hirth, H.M. Zbib and J. Lothe, Model. Simulat. Mater. Sci. Eng. 6 (1998) p.165.

    Article  Google Scholar 

  27. M.A. Shehadeh Phil. Mag. 92 (2012) p.1173.

    Google Scholar 

  28. Staroselsky, A., & Anand, L. (2003). A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B. International Journal of Plasticity, 19(10), 1843–1864.

    Article  Google Scholar 

  29. Long, T. R., & Smith, C. S. (1957). Single-crystal elastic constants of magnesium and magnesium alloys. Acta Metallurgica, 5(4), 200–207.

    Article  Google Scholar 

  30. Kang, K., Bulatov, V. V., & Cai, W. (2012). Singular orientations and faceted motion of dislocations in body-centered cubic crystals. Proceedings of the National Academy of Sciences, 109(38), 15174–15178.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Jaber, W., Shehadeh, M. (2015). C-Axis Compression of Magnesium Single Crystals: Multi-Scale Dislocation Dynamics Analyses. In: Karaman, I., Arróyave, R., Masad, E. (eds) Proceedings of the TMS Middle East — Mediterranean Materials Congress on Energy and Infrastructure Systems (MEMA 2015). Springer, Cham. https://doi.org/10.1007/978-3-319-48766-3_50

Download citation

Publish with us

Policies and ethics