Skip to main content

Formation of Equiaxed Crystals by Complex Inclusions during Solidification of Advanced High Strength Steel

  • Conference paper
Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing

Abstract

The effect of Mg-Ti deoxidation on the solidification structure of advanced high strength steel was investigated by observing not only the solidification structure but also the inclusion particles using SEM-EDS. The effect of precipitation of TiN, MgO and ‘TiN-MgO’ on the formation of fine equiaxed crystals was evaluated. The composition of inclusions was changed as in the order of MgO ➔ ‘MgO(core)+TiN(surface)’ ➔ Ti2O3 by reaction time, which corresponds to the change of solidification structure as ‘columnar ➔ equiaxed ➔ columnar.’ This could be understood from the concept of lattice disregistry in between delta iron and MgO (3.97%), TiN (3.91%), and Ti2O3 (18.9%). However, even with very low disregistry between delta iron and MgO, the MgO itself did not work as an effective catalyst, indicating that there is another criterion for determining a good catalyst. The mechanism of the formation of TiN on MgO surface was schematically described. The precipitation of TiN on MgO surface was feasible although the content of Ti and N was lower than the equilibrium solubility product for the formation of TiN. Because disregistry between TiN and MgO is very low (0.05%), the precipitation of TiN on the surface of MgO is energetically more favorable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.L. Bramfitt: Metall. Trans., 1 (1970), pp. 1987–95.

    Article  Google Scholar 

  2. T. Ohashi, T. Hiromoto, H. Fujii, Y. Nuri and K. Asano: Tetsu-to-Hagané, 62 (1976), pp. 614–23.

    Google Scholar 

  3. K. Nakajima, H. Hasegawa, S. Khumkoa and S. Mizoguchi: Metall. Mater. Trans. B., 34B (2003), pp. 539–47.

    Article  Google Scholar 

  4. K. Nakajima, H. Ohta, H. Suito and P. Jönsson: ISIJ Int., 46 (2006), pp. 807–13.

    Article  Google Scholar 

  5. K. Sakata and H. Suito: Metall. Mater. Trans. B., 30B (1999), pp. 1053–63.

    Article  Google Scholar 

  6. M. Guo and H. Suito: ISIJ Int., 39 (1999), pp. 722–29.

    Article  Google Scholar 

  7. Ø. Grong: Metallurgical Modeling of Welding, 2nd edition, The Institute of Materials, London, 1997, pp. 221–300.

    Google Scholar 

  8. Ø. Grong and D.K. Matlock: Int. Met. Rev., 31 (1986), pp. 27–48.

    Article  Google Scholar 

  9. O.M. Akselsen, Ø. Grong, and P.E. Kvaale: Metall. Mater. Trans. A, 17A (1986), pp. 1529–36.

    Article  Google Scholar 

  10. J. Takamura and S. Mizuguchi: Proc. 6th Int. Iron Steel Cong., vol. 3, ISIJ, Tokyo, 1990, pp. 591–97.

    Google Scholar 

  11. E.A. Metzbower, H.K.D.H. Bhadeshia, and R.H. Phillips: Mater. Sci. Technol., 10 (1994), pp. 56–59.

    Article  Google Scholar 

  12. Z. Yang and T. Debroy: Metall. Mater. Trans. B, 30B (1999), pp. 483–93.

    Article  Google Scholar 

  13. T. Koseki and G. Thewlis: Mater. Sci. Technol., 21 (2005), pp. 867–79.

    Article  Google Scholar 

  14. G. Thewlis: Mater. Sci. Technol., 22 (2006), pp. 153–66.

    Article  Google Scholar 

  15. K.S. Bang, C. Park, and S. Liu: J. Mater. Sci., 41 (2006), pp. 5994–6000.

    Article  Google Scholar 

  16. T. Koseki, H. Kato, M. Tsutsumi, K. Kasaki, and J. Inoue: Int. J. Mater. Res., 99 (2008), pp. 347–51.

    Article  Google Scholar 

  17. H.K. Sung, S.Y. Shin, W. Cha, K. Oh, S. Lee, and N.J. Kim: Mater. Sci. Eng. A, 528 (2011), pp. 3350–57.

    Article  Google Scholar 

  18. H. Suito, A.V. Karasev, M. Hamada, and R. Inoue, and K. Nakajima: ISIJ Int., 51 (2011), pp. 1151–62.

    Article  Google Scholar 

  19. J.L. Caron, S.S. Babu, and J.C. Lippold: Metall. Mater. Trans. A, 42A (2011), pp. 4015–4031.

    Article  Google Scholar 

  20. A.O. Kluken, Ø. Grong and G. Rørvik: Metall. Mater. Trans. A., 21A (1990), pp. 2047–58.

    Article  Google Scholar 

  21. H. Terasaki and Y. Komizo: Sci. Technol. Weld. Join., 11 (2006), pp. 561–66.

    Article  Google Scholar 

  22. T. Yamada, H. Terasaki and Y. Komizo: Sci. Technol. Weld. Join., 13 (2008), pp. 118–25.

    Article  Google Scholar 

  23. T. Koseki, S. Ohkita and N. Yurioka: Sci. Technol. Weld. Join., 2 (1997), pp. 65–9.

    Article  Google Scholar 

  24. Y. Ito and M. Nakanishi: Sumitomo Search, 15 (1976), pp. 42–62.

    Google Scholar 

  25. N. Mori, H. Homma, M. Wakabayshi and S. Ohkita: J. Jpn. Weld. Soc., 50 (1981), pp. 786–93.

    Article  Google Scholar 

  26. T. Nishizawa: ISIJ Int., 40 (2000), pp. 1269–74.

    Article  Google Scholar 

  27. J.H. Park: Calphad, 35 (2011), pp. 455–62.

    Article  Google Scholar 

  28. H. Fujimura, S. Tsuge, Y. Komizo and T. Nishizawa: Tetsu-to-Hagané, 87 (2001), pp. 29–34.

    Google Scholar 

  29. K. Isobe: ISIJ Int., 50 (2010), pp. 1972–80.

    Article  Google Scholar 

  30. G.V. Pervushin and H. Sutio: ISIJ Int., 41 (2001), pp. 728–737.

    Article  Google Scholar 

  31. G.V. Pervushin and H. Sutio: ISIJ Int., 41 (2001), pp. 748–756.

    Article  Google Scholar 

  32. H. Ohta and H. Suito: ISIJ Int., 47 (2007), pp. 197–206.

    Article  Google Scholar 

  33. A.V. Karasev and H. Suito: ISIJ Int., 49 (2009), pp. 229–238

    Article  Google Scholar 

  34. A. Ito, H. Suito and R. Inoue: ISIJ Int., 52 (2012), pp. 1196–1205.

    Article  Google Scholar 

  35. S. Mridha and D.H. Jack: Metallography, 15 (1982), pp. 163–75.

    Article  Google Scholar 

  36. J.H. Park, D.J. Kim, and D.J. Min: Metall. Mater. Trans. A, 43A (2012), pp. 2316–2324.

    Article  Google Scholar 

  37. J.S. Park, C. Lee and J.H. Park: Metall. Mater. Trans. B, 43B (2012), pp. 1550–1564.

    Article  Google Scholar 

  38. Slag Atlas, edited by VDEh, Verlag Stahleisen GmbH, 2nd edition, 1995, p.89.

    Google Scholar 

  39. www.factsage.com.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Park, J.H., Park, J.S., Lee, C. (2013). Formation of Equiaxed Crystals by Complex Inclusions during Solidification of Advanced High Strength Steel. In: Marquis, F. (eds) Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-48764-9_82

Download citation

Publish with us

Policies and ethics