Skip to main content

Abstract

Prefer-oriented and fine grained polycrystalline InN films are deposited on sapphire substrate using electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition (ECR-PEMOCVD) system at low-temperature. Trimethyl indium (TMIn) and N2 are applied as precursors for In and N, respectively. The influence of deposition temperature on the structural, electrical and morphological properties of InN films is systematically investigated by x-ray diffraction analysis (XRD), Hall Effect measurement (HL5500) and atomic force microscopy (AFM). The results show that the as-grown InN films with smooth surface roughness of 4.59nm and preferred orientation are successfully achieved at the optimized deposition temperature of 450°C, which was low temperature here. The InN films reported here will provide various opportunities for the development of high efficiency and high performance semiconductor devices based on InN materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Orton, J.W. and C.T. Foxon 1998 Rep. Prog. Phys. 61 1

    Article  Google Scholar 

  2. Ashraful Ghani Bhuiyan, Akihiro Hashimoto, and Akio Yamamoto 2003 J. Appl. Phys. 94 2779

    Article  Google Scholar 

  3. Takashi Matsuoka et al 2002 Appl. Phys. Lett. 81 1246

    Article  Google Scholar 

  4. Chin, V.W.L., T.L. Tansley, and T. Osotchan 1994 J. Appl. Phys. 75 7365

    Article  Google Scholar 

  5. Nanishi, Y et al 2003 Phys. Stat. Sol. 200 202

    Article  Google Scholar 

  6. Huang, Y et al 2005 J. Cryst. Growth. 276 13

    Article  Google Scholar 

  7. Jani O, Ferguson I. [J]. Appl Phys Lett. 91, 132117 (2007).

    Google Scholar 

  8. Yamamoto A, Tanaka T et al 2002. Phys. stat. sol. 1945 10.

    Google Scholar 

  9. A. Yamamoto, Y. Murakami et al 2002 phys. stat. sol. (b) 94 510

    Article  Google Scholar 

  10. Akio Yamamoto, Tomohiro Shin-ya et al 1998 J. Cryst. Growth 189 461

    Article  Google Scholar 

  11. Wei-Kuo Chen, Yung-Chung Pan et al 1997 Jpn. J. Appl. Phys. 36 1625

    Article  Google Scholar 

  12. Hai Lu, William J. Schaff et al 2001 Appl. Phys. Lett. 79 1489

    Article  Google Scholar 

  13. Yasushi Nanishi, Yoshiki Saito et al 2003 Jpn. J. Appl. Phys. 42 2549

    Article  Google Scholar 

  14. K. Xu and A. Yoshikawa 2003 Appl. Phys. Lett. 83 251

    Article  Google Scholar 

  15. Yoshinao Kumagaia, Jun Kikuchib et al 2007 J. Cryst. Growth 300 57

    Article  Google Scholar 

  16. A. L. Syrkinl, V. Ivantsovl et al 2008 phys. stat. sol. (c) 5 1792

    Article  Google Scholar 

  17. Feiler D, Williams RS et al 1997 J. Cryst.Growth 17 112

    Google Scholar 

  18. Shinoda H, Mutsukura N 2006 Thin Solid Films 503 8

    Article  Google Scholar 

  19. Biao Gu, Yin Xu, Fu Wen Qin et al 2002 Plasma Chemistry and Plasma Processing 22 159

    Google Scholar 

  20. Haiyan Shan, Jie Li, Shuai Li, Qingyu Zhang, Epitaxial ZnO films grown on ZnO-buffered c-plane sapphire substrates by hydrothermal method, Applied Surface Science 256 (2010) 6743–6747

    Article  Google Scholar 

  21. Dong Zhang, Jiming Bian, Fu Wen Qin et al 2011 Materials Research Bulletin 46 1582

    Article  Google Scholar 

  22. Fang-I Lai, Shou-Yi Kuo, Wei-Chun Chen et al 2011 Journal of Crystal Growth 326 37

    Article  Google Scholar 

  23. Jin-Woo Ju, Joo In Lee, In-Hwan Lee et al 2006 Thin Solid Films 515 2291

    Article  Google Scholar 

  24. H. Pinto, R. Jones, J. P. Goss, P. R. Briddonm, Mechanisms of doping graphene, physica status solidi (a) 207 (2010) 2131–2136

    Article  Google Scholar 

  25. Ö. Tuna, H. Behmenburg, C. Giesen, H. Kalisch, R. H. Jansen, G P. Yablonskii, M. Heuken, Dependence of InN properties on MOCVD growth parameters, physica status solidi (c) 8 (2011) 2044–2046

    Article  Google Scholar 

  26. V. Darakchieva, M.-Y Xie, D. Rogalla, H.-W. Becker, K. Lorenz, E. Alves, S. Ruffenach, M. Moret, O. Briot, Free electron properties and hydrogen in InN grown by MOVPE, physica status solidi (a) 208 (2011) 1179–1182

    Article  Google Scholar 

  27. S. Ruffenach, M. Moret, O. Briot, and B. Gil, Appl. Phys.Lett. 95, 042102 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Zhenhe, J. et al. (2013). Low-Temperature Grown InN Films Based on Sapphire Substrate with ECR-Plasma Enhanced MOCVD. In: Marquis, F. (eds) Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-48764-9_255

Download citation

Publish with us

Policies and ethics