Skip to main content

Quality Control via Electrical Resistivity Measurement of Industrial Anodes

  • Chapter
Light Metals 2015

Abstract

Aluminum production requires the use of carbon anodes. Anode quality influences strongly the cell stability, energy consumption, green house gas (GHG) emissions, and production cost. Current practice for anode quality evaluation (visual inspection and analysis of a core taken from the top of a small number of anodes produced) gives limited information.

A simple and non-intrusive technique has been developed to measure the electrical resistivity distribution in industrial anodes with the objective of using it for on-line quality control in the paste plant to eliminate defective green anodes. This helps avoid the unnecessary baking of substandard anodes and reduces energy consumption and GHG emissions. The technology could ultimately be used also for baked anodes. The electrical resistivity is a distinctive characteristic of anode quality, and its distribution indicates anode homogeneity. In this article, the measurement technique will be explained and results will be presented which demonstrate its use for the determination of anode quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 289.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tkac, M., Porosity development in composite carbon materials during heat treatment, Thesis for the degree of philosophiae doctor, Norwegian University of Science and Technology, (2007), 27–37.

    Google Scholar 

  2. Azari, K., Hany, A., Haushang, A., Picard, D., Fafard, M., Ziegler, D., Effects of physical properties of anode raw materials on the paste compaction behavior. Light Metals (2011), 1161–1168.

    Google Scholar 

  3. Hulse, K. L., Anode Manufacture: Raw Materials, Formulation and Processing Parameters, R&D Carbon, (2000).

    Google Scholar 

  4. Figueiredo, F. E. O., Kato, C. R. , Nascimento A. S., Marques, A. O. F., Miotto, P., Finer fines in anode formulation, Light Metals, (2005), 665–668.

    Google Scholar 

  5. H. Sato, H. Aoki, T. Miura, J. W. Patrick, Numerical analysis of macrocrack formation behaviour in lump coke, Fuel, 76 (9), (2007), 879–885.

    Article  Google Scholar 

  6. Mirchi, A.A., Savard, G., Tremblay, J. P., Simard, M., Alcan characterisation of pitch performance for pitch binder evaluation and process changes in an aluminium smelter. Light Metals., (2002), 525–533.

    Google Scholar 

  7. Rolf, A.J., Measures to improve carbon baking, Light Metals (1992), 739–745.

    Google Scholar 

  8. Narvekar, R.N., A. Sardesai, and A.B. Prasad. Importance of granulometry in calcined petroleum coke. Light Metals (2003), 525–530.

    Google Scholar 

  9. Seger, E.J., Method and means for measuring electrode resistance. US patent US3735253, (1973).

    Google Scholar 

  10. Seger, E.J., New method of measuring electric resistance for quality control. Light Metals, (1978), 283–290.

    Google Scholar 

  11. Chollier-Brym M.J., Laroche, D., Alexandre, A., Landry, M., Simard, C., Simard, L., Ringuette, D., New method for representative measurement of anode electrical resistance. Light Metals, (2012), 1299–1302.

    Google Scholar 

  12. Léonard, G., Guérard, S., Laroche, D., Arnaud, J.C., Gourmaud, S., Gagnon, M., Marie-Chollier, M.J., Perron., Y., Anode Electrical Resistance Measurements: Learning and Industrial On-line Measurement Equipment Development. Light Metals, (2014), 1269–1274.

    Google Scholar 

  13. Haldemann, P.R., Fawzi, E.P., Methods and Apparatus for Non-destructively Detecting Flaws in a Carbon Anode”, US Patent US5473248, (1995).

    Google Scholar 

  14. Audet, D., Parent, L., Système et procédé de prévision de la conductivité électrique d’anodes de production d’aluminium avant leur cuisson. US Patent US7576534, International patent IPC, CA 2590482, (2009, 2013).

    Google Scholar 

  15. Amrani, S., Kocaefe, D., Kocaefe, Y., Morais, B., Blaney, G., Effect of Heating Rate on the Crack Formation During Baking in Carbon Anodes Used in Aluminum Industry, Light Metals (2014), DOI: 10.1002/9781118888438.ch196.

    Google Scholar 

  16. Kocaefe, D., Sarkar, A., Das, S., Amrani, S., Bhattacharyay, D., Sarkar, D., Kocaefe, Y., Morais, B., Gagnon, M., Review of Different Techniques to Study the Interaction Between Coke and Pitch in Anode Manufacturing, Light Metals, (2013), DOI: 10.1002/9781118663189.ch176.

    Google Scholar 

  17. Kocaefe, D., Bhattacharyay, D., Kocaefe, Y., Method for analyzing an anode and device thereof, Provisional patent application US 61/939768, (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Kocaefe, Y., Kocaefe, D., Bhattacharyay, D. (2015). Quality Control via Electrical Resistivity Measurement of Industrial Anodes. In: Hyland, M. (eds) Light Metals 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-48248-4_184

Download citation

Publish with us

Policies and ethics