Skip to main content

Development of Heusler-Type Fe2VAl Alloys for Thermoelectric Power Generation

  • Conference paper
TMS 2014: 143rd Annual Meeting & Exhibition
  • 3148 Accesses

Abstract

A Heusler alloy, Fe2VAl, is a promising candidate for thermoelectric power generation because of its high thermoelectric power factor, such as 5.5 mW/mK2 at 300 K. This high power factor is produced by a steep pseudogap around the Fermi level. The simultaneous enhancement of Seebeck coefficient and electrical conductivity can be achieved by the control of valence electron concentration within a rigid band model. Moreover, recent studies in the off-stoichiometric composition control, such as Fe2-xV1+xAl, suggest that the modification of the electronic band structure can further enhance the Seebeck coefficient, resulting in the higher power factor. The power generation ability was evaluated by the construction of a thermoelectric module consisting of only the Fe2VAl alloy. A high output power density of 0.7 W/cm2 was then obtained. The durability of the Fe2VAl module derived from high mechanical strength and excellent resistance to oxidation enhances utility for practical thermoelectric power generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Kato et al., “Effect of Silicon Substitution on Thermoelectric Properties of Heusler-type Fe2VAl Alloy”, J. Jpn. Inst. Metals 65 (2001) 652–656.

    Google Scholar 

  2. Y. Nishino et al., “Effect of off-stoichiometry on the transport properties of the Heusler-type Fe2VAl compound”, Phys. Rev. B 63 (2001) 233–303.

    Google Scholar 

  3. Y. Nishino, S. Deguchi and U. Mizutani, “Thermal and transport properties of the Heusler-type Fe2VAl1-xGex (0≤x≤0.20) alloys: Effect of doping on lattice thermal conductivity, electrical resistivity, and Seebeck coefficient”, Phys. Rev. B 74 (2006) 115115.

    Google Scholar 

  4. G. Y. Guo, G. A. Botton and Y. Nishino, “Electronic structure of possible 3d “heavy-fermion” compound Fe2VAl”, J. Phys.: Cond. Matter 10 (1998) L119-L126.

    Google Scholar 

  5. D. J. Singh and I. I. Mazin, “Electronic structure, local moments, and transport in Fe2VAl”, Phys. Rev. B 57 (1998) 14352–14356.

    Article  Google Scholar 

  6. R. Weht and W. E. Pickett, “Excitonic correlations in the intermetallic Fe2VAl”, Phys. Rev. B 58(1998)6855–6861.

    Article  Google Scholar 

  7. M. Weinert, R. E. Watson, “Hybridization-induced band gaps in transition-metal aluminides”, Phys. Rev. B 58 (1998) 9732–9740.

    Article  Google Scholar 

  8. A. Bansil et al., “Electronic structure and magnetism of Fe3-xVxX (X=Si, Ga, and Al) alloys by the KKR-CPA method”, Phys. Rev. B 60 (1999) 13396–13412.

    Article  Google Scholar 

  9. C. S. Lue and J. H. Ross, “Semimetallic behavior in Fe2VAl: NMR evidence”, Phys. Rev. B 58 (1998) 9763–9766.

    Article  Google Scholar 

  10. H. Okamura et al., “Pseudogap Formation in the Intermetallic Compounds (Fe1-xVx)3Al”, Phys. Rev. Lett. 84 (2000) 3674–3677.

    Article  Google Scholar 

  11. N. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (Clarendon Press, Oxford, 1936).

    Google Scholar 

  12. H. Matsuura et al., “Doping Effects on Thermoelectric Properties of the Pseudogap Fe2VAl System”, J. Jpn. Inst. Metals 66 (2002) 767–771.

    Google Scholar 

  13. T. Mori, N. Ide and Y. Nishino, “Thermoelectric Properties of p-Type Fe2(V1-x-yTixTay)Al Alloys”, J. Jpn. Inst. Metals 72 (2008) 593–598.

    Article  Google Scholar 

  14. T. Sugiura and Y. Nishino, “Doping Effects of Transition Metals on Thermoelectric Properties of Off-Stoichiometric Fe2VAl Alloys”, J. Jpn. Inst. Metals 73 (2009) 846–851.

    Article  Google Scholar 

  15. M. Mikami et al., “Thermoelectric properties of tungsten-substituted Heusler Fe2VAl alloy”, J. Appl. Phys. 111 (2012) 093710.

    Google Scholar 

  16. M. Mikami, A. Matsumoto and K. Kobayashi, “Synthesis and thermoelectric properties of microstructural Heusler Fe2VAl alloy”, J. Alloy. Compd. 461 (2008) 423–426.

    Article  Google Scholar 

  17. M. Mikami et al., “Development and Evaluation of High-Strength Fe2VAl Thermoelectric Module”, Jpn. J. Appl. Phys. 47 (2008) 1512–1516.

    Article  Google Scholar 

  18. M. Mikami et al., “Development of a Thermoelectric Module Using the Heusler Alloy Fe2VAl”, J. Electron. Mater. 38 (2009) 1121–1126.

    Article  Google Scholar 

  19. C. S. Lue et al., “Thermoelectric properties of quaternary Heusler alloys Fe2VAl1-xSix”, Phys. Rev. B 75 (2007) 064204.

    Google Scholar 

  20. M. Vasundhara, V. Srinivas and V. V. Rao, “Electronic transport in Heusler-type Fe2VAl1-xMx alloys (M=B, In, Si)”, Phys. Rev. B 11 (2008) 224415.

    Google Scholar 

  21. E. J. Skoug et al., “High Thermoelectric Power Factor Near Room Temperature in Full-Heusler Alloys”, J. Electron. Mater. 38 (2009) 1221.

    Google Scholar 

  22. C. S. Lue et al., “Chemical pressure effect on the transport and electronic band structure of Fe2Vl-xNbxAl”, Phys. Rev. B 78 (2008) 165117.

    Google Scholar 

  23. F. Kobayashi, N. Ide and Y. Nishino, “Effects of Re Substitution on Thermoelectric Properties of Pseudogap System Fe2VAl”, J. Jpn. Inst. Metals 71 (2007) 208–212.

    Google Scholar 

  24. W. Lu, W. Zhang and L. Chen, “Thermoelectric properties of (Fe1-xCox)2VAl Heusler-type compounds”, J. Alloy. Compd. 484 (2009) 812–815.

    Article  Google Scholar 

  25. K. Iwase et al., “Thermoelectric Properties of Heusler-Type (Fe1-xCox)2TiAl Alloys”, J. Jpn. Inst. Metals 72 (2008) 464–469.

    Article  Google Scholar 

  26. Y. Nishino, The Science of Complex Alloy Phases, ed T. B. Massalski and P. E. Turchi (Warrendale: TMS).

    Google Scholar 

  27. C. S. Lue and Y. K. Kuo, “Thermoelectric properties of the semimetallic Heusler compounds Fe2-xV1+xM(M=Al, Ga)”, Phys. Rev. B 66 (2002) 085121.

    Google Scholar 

  28. Y. Hanada, R. O. Suzuki and K. Ono, “Seebeck coefficient of (Fe,V)3Al alloys”, J. Alloy. Compd. 329(2001)63–68.

    Article  Google Scholar 

  29. T. Nakama se al., “Transport Properties of Heusler Compounds Fe3-xVxAl”, J. Phys. Soc. Jpn. 74(2005)1378–1381.

    Article  Google Scholar 

  30. Y. Sandaiji et al., “Off-stoichiometric Effects on Thermoelectric Properties of Fe2VAl-based Compounds”, J. Jpn. Soc. Powder. Powder. Metall. 57 (2010) 207–212.

    Article  Google Scholar 

  31. T. Kajikawa, “Approach to the Practical Use of Thermoelectric Power Generation”, J. Electron. Mater. 38 (2009) 1083–1088.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Mikami, M., Nishino, Y. (2014). Development of Heusler-Type Fe2VAl Alloys for Thermoelectric Power Generation. In: TMS 2014: 143rd Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48237-8_46

Download citation

Publish with us

Policies and ethics