Skip to main content

Thermodynamic Optimization of Mn-Si-C System

  • Conference paper
Celebrating the Megascale

Abstract

The critical evaluation and thermodynamic optimization of Mn-Si-C and its sub-binary systems have been carried out over the whole composition range from room temperature to above the liquidus temperature. The solution properties of the liquid systems have not been clearly described because the liquid solution exhibits a high degree of short-range-ordering. In order to predict the thermodynamics of the liquid solution, the liquid phases were optimized by the modified quasichemical model. The model parameters of the solid phases were also optimized by the compound energy formalism to best reproduce the phase diagram and important thermodynamic properties in Mn-Si-C system. Using the model parameters, various thermodynamic calculations were carried out. The present database will be a part of larger thermodynamic database for the ferromanganese alloy database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.D. You, B.W. Lee and J.J. Pak, “Manganese loss during the oxygen refining of high-carbon ferromanganese melts”, Metals and Materials, 5 (1999), 497–502.

    Article  Google Scholar 

  2. W. Huang, “Thermodynamic assessment of the Mn-C system”, Scand. J. Metall., 19 (1990) 26–32.

    Google Scholar 

  3. D. Djurovic et al., “Thermodynamic assessment of the Mn-C system”, Calphad, 34 (2010) 279–285.

    Article  Google Scholar 

  4. P.Y. Chevalier, E. Fisher and A. Rivet, “A Thermodynamic evaluation of the Mn-Si system”, Calphad, 19 (1995) 57–68.

    Article  Google Scholar 

  5. J. Gröbner, H.L. Lukas and F. Aldinger, “Thermodynamic calculation of the ternary Al-Si-C”, Calphad, 20 (1996) 247–254.

    Article  Google Scholar 

  6. A.D. Pelton et al., “The modified quasichemical model I — Binary solutions”, Metall. Mater. Trans. B, 31B (2000) 651–659.

    Article  Google Scholar 

  7. A. Shukla, Y.B. Kang and A.D. Pelton, “Thermodynamic assessment of the Si-Zn, Mn-Si, Mg-Si-Zn and Mg-Mn-Si systems”, Calphad, 32 (2008) 470–477.

    Article  Google Scholar 

  8. A.D. Pelton and P. Chartrand, “The modified quasichemical model: Part II — Multicomponent solutions”, Metall. Mater. Trans. A, 32A (2001) 1355–1360.

    Article  Google Scholar 

  9. A.D. Pelton, “A general geometric thermodynamic model for multicomponent solutions”, Calphad, 25 (2001) 319–328.

    Article  Google Scholar 

  10. M. Hillert, “The Compound Energy Formalism”, J. Alloys Comp., 320 (2001) 161–176.

    Article  Google Scholar 

  11. U.M. Hillert and M. Jarl, “A model for alloying effects in ferromagnetic metals”, Calphad, 2 (1978) 227–238.

    Article  Google Scholar 

  12. A. Katsnelson, F. Tsukihashi and N. Sano, “Determination of manganese and carbon activities of Mn-C melts at 1628K”, ISIJ Int., 33 (1993) 1045–1048.

    Article  Google Scholar 

  13. J. Fenstad, Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway (2000).

    Google Scholar 

  14. E.J. Kim, B.D. You and J.J. Pak, “Thermodynamics of carbon in liquid manganese and ferromanganese alloys”, Metall. Mater. Trans. B, 34B (2003) 51–59.

    Article  Google Scholar 

  15. V.T. Witusiewicz, A.K. Biletski and V.S. Shumikin, “Thermodynamic properties of liquid Mn-C alloys”, Metally, 6 (1988) 26.

    Google Scholar 

  16. A.T. Dinsdale, Calphad, “SGTE data for pure elements”, 15 (1991) 317–425.

    Google Scholar 

  17. S.V. Meschel and O.J. Kleppa, “Standard enthalpies of formation of some 3d transition metal carbides by high temperature reaction calorimetry”, J. Alloys Comp., 257 (1997) 227–233.

    Article  Google Scholar 

  18. A.I. Zaitsev et al., “Thermodynamic studies of manganese carbides”, Dokl. Phys. Chem., 395 (2004) 632–636.

    Google Scholar 

  19. W.M. Dawson and F.R. Sale, “Enthalpy of formation of manganese carbides, Mn23C6”, Metall. Mater. Trans. A, 11A (1980) 1849–1852.

    Article  Google Scholar 

  20. R. Benz, J.F. Elliott and J. Chipman, “Solid phases of the Mn-C system”, Metall. Trans., 4 (1973) 1449–1452.

    Article  Google Scholar 

  21. M.K. Paek et al., “Thermodynamic interactions among carbon, silicon and iron in carbon saturated manganese melts”, Korean J. Met. Mater., 50 (2012) 45–51.

    Article  Google Scholar 

  22. K. Tang, V. Olso and S.E. Olsen, “Manganese and silicon activities in liquid carbon-saturated Mn-Si-C alloys”, Steel Research, 73 (2002) 77–81.

    Google Scholar 

  23. W. Ding and S.E. Olsen, “Reaction equilibria in the production of manganese ferroalloys”, Metall. Mater. Trans. B, 27B (1996) 5–17.

    Article  Google Scholar 

  24. V.Y. Dashevskii et al., “Solubility of carbon in liquid Mn-Si system”, Dokl. Akad. Nauk, 345 (1995) 75–78.

    Google Scholar 

  25. R. Ni, Z. Ma and S. Wei, “Thermodynamics of Mn-Fe-C and Mn-Si-C system”, Steel Resarch, 61 (1990) 113–116.

    Google Scholar 

  26. A. Tanaka, “Activities of manganese in Mn-Fe-C, Mn-Si-C and Mn-Fe-Si-C melts at 1673K”, Trans. JIM, 21 (1980) 27–33.

    Article  Google Scholar 

  27. P. Spinat et al., “Characterization of two isotypic phases Mn8Si2C and Fe8Si2C”, Compt. Rend. Acad. Sei. Paris Sér. C, 274 (1972) 1159–1162.

    Google Scholar 

  28. P. Spinat and P. Herpin, “Neutron diffraction studies of the Mn5SiC phase and the solid solutions (Mn1-xMox)5SiC and (Mn1-xFex)5SiC”, Bull. Soc. fr. Minéral. Crystallogr., 99 (1976) 13–20.

    Google Scholar 

  29. J.C. Schuster, “Silicon carbide and transition metals”, Int. J. Refract. Met. Hard Mater., 12 (1994) 173–177.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Paek, MK., Kang, YB., Pak, JJ. (2014). Thermodynamic Optimization of Mn-Si-C System. In: Mackey, P.J., Grimsey, E.J., Jones, R.T., Brooks, G.A. (eds) Celebrating the Megascale. Springer, Cham. https://doi.org/10.1007/978-3-319-48234-7_64

Download citation

Publish with us

Policies and ethics