Skip to main content

Thermomechanical Effects during Direct Chill and Electromagnetic Casting of Aluminum Alloys Part II : Numerical Simulation

  • Chapter
Essential Readings in Light Metals

Abstract

The prediction of the ingot deformation during direct chill (DC) and electromagnetic (EM) casting of aluminum alloy slabs would allow the optimization of the mold/inductor shape capable of producing flat ingots. The transient thermomechanical model presented here predicts the deformation and the temperature field evolution during DC/EM casting. Deformation in the solid is assumed to obey a viscoplastic law. The model is validated on the basis of the measurements presented in part I. It enables to predict the influence of casting parameters on butt curl and swell, rolling faces pull-in and residual stress state for DC and EM-cast ingots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 289.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.F. Emley: Continuous casting of aluminum; International Metals Reviews, June 1976.

    Google Scholar 

  2. Y. Krähenbühl, R. Von Kaenel, B. Carrupt, J.C. Weber: Understanding the starting phase: a key factor to the success of EMC (electromagnetic casting); Light Metals, 1990, p. 893.

    Google Scholar 

  3. C.H. Weaver: An empirical model to explain crosssection changes of D.C. sheet ingot during casting, TMS, AIME, 1976, p. 441.

    Google Scholar 

  4. C.H. Weaver: Designing sheet ingot molds to produce rectangular ingots of the desired thickness and width, Light Metals, 1991, p. 953.

    Google Scholar 

  5. H. Fjær and A. Mo : Alspen-a mathematical model for thermal stresses in direct chill casting of aluminum billets, Met. Trans., vol. 21B, 1990, p. 1049.

    Google Scholar 

  6. H. Fjær and A. Mo : Mathematical Modeling of Thermal Stresses during DC casting of Aluminum Billets, Light Metals. 1990, p. 945.

    Google Scholar 

  7. S. Mariaux, M. Rappaz, Y. Krähenbühl, M. Plata: Modeling of thermo-mechanical effects during the start-up phase of the electromagnetic casting process, Light Metals, 1992, p. 175.

    Google Scholar 

  8. B. Hannart, F. Cialti, R. V. Schalkwijk: Thermal stresses in DC casting of aluminum slabs: application of a finite element model, Light Metals, 1994, p. 879.

    Google Scholar 

  9. K. Ho and R. Pehlke : Metal-mold interfacial heat transfer, Met. Trans., vol. 16B, 1985, p. 585.

    Google Scholar 

  10. L. Anand: Constitutive Equations for the Rate-Dependent Deformation of Metals at Elevated Temperatures, Trans. ASME, vol. 104, 1982, p. 12.

    Google Scholar 

  11. L.F. Mondolfo: Aluminum Alloys: Structure and Properties, Butterworths, Boston, 1976.

    Google Scholar 

  12. Aluminum: Properties and Physical Metallurgy, edited by John E. Hatch, ASM, Metals Park, Ohio, 1983.

    Google Scholar 

  13. J.-M. Drezet, M. Rappaz, B. Carrupt and M. Plata : Experimental investigation of thermomechanical effects during direct chill and electromagnetic casting of aluminum alloys, to be published in Met. Trans.

    Google Scholar 

  14. Introduction to creep, R. W. Evans and B. Wilshire, The Institute of Materials.

    Google Scholar 

  15. F. Garafalo : An empirical relation defining the stress dependence of minimum creep rate in metals, Trans. Met. Soc. AIME, vol. 227, 1963, p. 351.

    Google Scholar 

  16. J.M. Drezet and G. Eggeler: High apparent creep activation energies in mushy zone microstructures, Scripta Met, et Mater., vol. 31, Sept. 1994, p. 757.

    Google Scholar 

  17. O. Branswyck, J. Collot, P. Vicente-Hernandez, A.-M. Chaze and C. Levaillant: Investigation of semisolid state behavior of alloys aimed at process modeling, in Euromat 1991, Ed. J. W. Clyne (Inst. Metals, London 1992), p. 124–130.

    Google Scholar 

  18. W. A. Wong and J. J. Jonas: Aluminum extrusion as a thermally activated process, Trans. Met. Soc AIME, vol. 242, 1968, p. 2271.

    Google Scholar 

  19. Abaqus theoretical manual, K. Hibbit and J. Sorensen, Hibbit, Karlson and Sorensen, Inc., Providence, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Minerals, Metals & Materials Society

About this chapter

Cite this chapter

Drezet, JM., Rappaz, M., Krähenbühl, Y. (2016). Thermomechanical Effects during Direct Chill and Electromagnetic Casting of Aluminum Alloys Part II : Numerical Simulation. In: Grandfield, J.F., Eskin, D.G. (eds) Essential Readings in Light Metals. Springer, Cham. https://doi.org/10.1007/978-3-319-48228-6_110

Download citation

Publish with us

Policies and ethics