Skip to main content

Aluminas in Air Pollution Control

  • Chapter
Essential Readings in Light Metals
  • 146 Accesses

Abstract

Alumina and alumina based sorbents, catalysts, and catalyst supports are used in many air pollution control applications because of high surface area, porosity and thermal stability. Although some air pollution abatement may use once-through sorbents, problems of solid waste make regeneration attractive, especially where high volume pollutants like SO2 can be converted to storable sulfur. “Alkalized alumina” as a regenerable SO2 sortent has been tested extensively with some recent reports indicating possible effectiveness on NOX as well. High area alumina is used as support for catalytic materials in conversion of SO2 to H2SO4, while special aluminas provide the best catalyst for the Claus process for conversion of H2S and SO2 to sulfur. The wide range of available alumina properties of value in air pollution abatement in smelters, power plants and chemical processing are illustrated by discussing (a) dry sorption of SO2 by alkalized alumina, (b) absorption of SO2 in slurries of basic aluminum sulfate, (c) catalytic conversion of SO2 to H2SO4, (d) catalytic conversion of SO2/H2S to elemental sulfur in the Claus process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (a) D. J. Bienstock, J. H. Field and J. G. Myers, BuMines Report Invest. 7021 (July 1967).

    Google Scholar 

  2. D. Bienstock, J. H. Field, S. Katell and K. D. Plants, “Evaluation of Dry Processes for Removing Sulfur Dioxide from Power Plant Flue Gases”, Journal of Air Pollution Control Association, Vol. 15, No. 10, 1965, pp. 459–464.

    Article  Google Scholar 

  3. M. D. Schlesinger and E. G. Illig, “The Regeneration of Alkalized Alumina”, Chemical Engineering Progress, Symposium Series No. 115, Vol. 67, 1971, pp. 46–51.

    Google Scholar 

  4. D. Bienstock and J. H. Field, U.S. Patent 2,992,884 (July 1961).

    Google Scholar 

  5. J. W. Town, P. E. Sanker and H. J. Kelly, “Alkalized Alumina Attritioning and SO2 Sorption Rates”, BuMines Report Invest. 7275 (July 1969);

    Google Scholar 

  6. J. I. Paige, J. W. Town, J. H. Russell and H. J. Kelly, “Sorption of SO2 and Regeneration of Alkalized Alumina in Fluidized Bed Reactors”, BuMines Report Invest. 7414 (August 1970);

    Google Scholar 

  7. J. H. Russell, J. I. Paige and D. L. Paulson, “Evaluation of Some Solid Oxides as Sorbents of Sulfur Dioxide”, BuMines Report Invest. 7582 (1971).

    Google Scholar 

  8. J. E. Newell, “Making Sulfur from Flue Gases”, Chemical Engineering Progress, Vol. 65, No. 8, 1969, pp. 62 et seq.

    Google Scholar 

  9. D. H. McCrea, A. J. Forney and J. G. Myers, “Recovery of Sulfur from Flue Gases Using a Copper Oxide Absorbent”, Journal of Air Pollution Control Association, Vol. 20, No. 12, December 1970, pp. 819–24.

    Article  Google Scholar 

  10. F. M. Dautzenberg, J. E. Nader, A. J. Van Ginnekan, “Shell’s Flue Gas Desulfurization Process”, Chemical Engineering Progress, Vol. 67, No. 8, 1971, pp. 86–91.

    Google Scholar 

  11. A. V. Slack, G. G. McGlannery and H. L. Falkenberry, “Economic Factors in Recovery of Sulfur Dioxide from Power Plant Stack Gas”, Journal of Air Pollution Control Association, Vol. 21, No. 1, 1971, pp. 9–15.

    Article  Google Scholar 

  12. J. B. Rosenbaum, D. R. George, L. Crocker, W. I. Nissen, S. L. May and H. R. Beard, “The Citrate Process for Removing SO2 and Recovering Sulfur from Waste Gases”, presented at AIME Environmental Water Quality Conference, Washington, D. C., June 7–9, 1971.

    Google Scholar 

  13. L. E. Gressingh, A. F. Graete, F. E. Miller and H. Barker, “Applicability of Aqueous Solutions to the Removal of SO2 from Flue Gases”, PB-196,780, Final Report under Contract PH 86–68-77 NAPCA.

    Google Scholar 

  14. M. P. Appleby, “The Recovery of Sulfur from Smelter Gases”, Journal of the Society of Chem. Ind., Vol. 56, 1937, pp. 139T–46T.

    Google Scholar 

  15. T. Nakamura, A. Matsu and M. Matsu, U.S. Patent 3,497,459 (1970);

    Google Scholar 

  16. Y. Aiba and T. Furumori, U.S. Patent 3,544,476 (1970) assigned to Taki Fertilizer Manufacturing Co., Ltd., Kakagawa, Japan.

    Google Scholar 

  17. G. N. Brown, S. L. Torrence, A. J. Repik, J. L. Stryker and F. J. Ball, “SO2 Recovery via Activated Carbon”, Chemical Engineering Progress, Vol. 68, No. 8, 1972, pp. 55–56.

    Google Scholar 

  18. W. R. Horlacher, R. E. Barnard, R. K. Teague and P. L. Hayden, “Four SO2 Removal Systems”, Chemical Engineering Progress, Vol. 68, No. 8, pp. 43–50.

    Google Scholar 

  19. Charles L. Thomas, “Catalytic Processes and Proven Catalysts”, Academic Press, New York, 1970, pp. 240–253.

    Google Scholar 

  20. L. A. Haas, T. H. McCormick and S. E. Khalafalla, “Removing Sulfur Dioxide by Carbon Monoxide Reduction”, BuMines Report of Investigation 7483 (1971).

    Google Scholar 

  21. K. T. Semrau, “Control of Sulfur Oxide Emissions from Primary Copper, Lead, and Zinc Smelters—A Critical Review”, Journal of Air Pollution Control Assoc, Vol. 21, No. 4, 1971, pp. 185–194.

    Article  Google Scholar 

  22. R. Lepsoe, “Chemistry of Sulfur Dioxide Reduction Kinetics”, Ind. Engineering Chemistry, Vol. 32, No. 7, 1940, pp. 910 et seq.

    Article  Google Scholar 

  23. E. P. Fleming and T. C. Fitt, “High Purity Sulfur from Smelter Gases”, Ind. Engr. Chem., Vol. 42, No. 11, 1950, pp. 2249 et seq.

    Article  Google Scholar 

  24. J. R. West and E. H. Conroy, “Process of Reducing SO2 to Elemental Sulfur”, U.S. Patent 3,199,955 (August 10, 1965).

    Google Scholar 

  25. Anon., “New Facility Will Produce Iron-Nickel Pellets and Elemental Sulfur”, Eng. Mining Journal, Vol. 169, No. 3, 1968, p. 168.

    Google Scholar 

  26. M. J. Pearson, “Catalysts for Claus Process”, presented at meeting of Canadian Natural Gas Producers Association, Calgary, Alberta, Canada, November 24, 1972. To be published in CNGPA Journal.

    Google Scholar 

  27. A. W. Yodis, “Sulfur from Smelter Gas by Reduction of Sulfur Dioxide”, preprint presented at Division of Fertilizer & Soil Chemistry, 158th National Meeting of American Chemical Society.

    Google Scholar 

  28. V. B. Sefton and H. J. Hopton, “Removal of Sulfur Dioxide from Waste Gases”, Canadian Patent 838,599 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Minerals, Metals & Materials Society

About this chapter

Cite this chapter

Murphy, J.F. (2016). Aluminas in Air Pollution Control. In: Donaldson, D., Raahauge, B.E. (eds) Essential Readings in Light Metals. Springer, Cham. https://doi.org/10.1007/978-3-319-48176-0_150

Download citation

Publish with us

Policies and ethics