Skip to main content

The influence of Mg-Zr master alloy microstructure on the corrosion of Mg

  • Chapter
Magnesium Technology 2013

Abstract

In this study, sixteen Mg-Zr alloys were produced to investigate the role of Zr on corrosion of Mg. Alloys were produced using two different commercial Mg-Zr master alloys commonly used for grain refining Mg, but which contain different Zr particle size distributions. It is seen that the master alloy with a smaller Zr particle size leads to an alloy containing more Zr in solid solution. The ratio of Zr in solid solution and in particle form was observed to have a marked effect on the corrosion of Mg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Okamoto, Mg — Zr (Magnesium — Zirconium), Journal of Phase Equilibria and Diffusion, 28(3), (2007), 305–306.

    Article  Google Scholar 

  2. I.J. Polmear, Light Alloys. 3rd Edition (Ed). 1995, London, England: Arnold.

    Google Scholar 

  3. E.F. Emley, Principles of Magnesium Technology. 1st edition (Ed). 1966, Manchester: Pergamon Press.

    Google Scholar 

  4. M. Qian and D.H. StJohn, Grain nucleation and formation in Mg-Zr alloys, International Journal of Cast Metals Research, 22(1–4), (2009), 256–259.

    Article  Google Scholar 

  5. K.V. Kutniy, I.I. Papirov, M.A. Tikhonovsky, A.I. Pikalov, S.V. Sivtzov, L.A. Pirozhenko, V.S. Shokurov, and V.A. Shkuropatenko, Influence of grain size on mechanical and corrosion properties of magnesium alloy for medical implants, Material Wissenschaft Und Werkstofftechnik, 40(4), (2009), 242–246.

    Article  Google Scholar 

  6. CD. Lee, Effect of grain size on the tensile properties of magnesium alloy, Materials Science and Engineering A, 459, (2007), 355–360.

    Article  Google Scholar 

  7. H.E. Friedrich and B.L. Mordike, Magnesium Technology. 2006, Berlin: Springer. 708.

    Google Scholar 

  8. W. Yuan, S.K. Panigrahi, J.Q. Su, and R.S. Mishra, Influence of grain size and texture on Hall-Petch relationship for a magnesium alloy, Scripta Materialia, 65, (2011), 994–997.

    Article  Google Scholar 

  9. H. Han, S. Liu, L. Kang, and L. Liu, Refinement role of electromagnetic stirring and calcium in AZ91 Magnesium alloy, Journal of Wuhan University of technology — Materials Science Edition, 23(2), (2007), 194–197.

    Article  Google Scholar 

  10. P. Lyon, New magnesium alloy for aerospace and specialty applications, in: A.A. Luo(Ed) Magnesium Technology, (2004), TMS, pp. 311–315.

    Google Scholar 

  11. T. Rzychon, J. Michalska, and A. Kielbus, Corrosion resistance of Mg-RE-Zr alloys, Journal of Achievments in Materials and Manufacturing Engineering, 21(1), (2007), 51–54.

    Google Scholar 

  12. C.J. Bettles, M.A. Gibson, and S.M. Zhu, Micro structure and mechanical behaviour of an elevated temperature Mg-rare earth based alloy, Material Science and Engineering A, 505, (2009), 6–12.

    Article  Google Scholar 

  13. A.C. Hanzi, F.H.D. Torre, A.S. Sologubenko, P. Gunde, R. Schmid-Fetzer, M. Kuehlein, J.F. Loffler, and P.J. Uggowitzer, Design strategy for microalloyed ultraductile magnesium alloys, Philosophical Magazine Letters, 89(6), (2009), 377–390.

    Article  Google Scholar 

  14. P. Cao, M. Qian, D.H. StJohn, and M.T. Frost, Uptake of iron and its effect on grain refinement of pure magnesium by zirconium, Materials Science and Technology, 20, (2003), 585–592.

    Article  Google Scholar 

  15. G. Song and D. StJohn, The effect of zirconium grain refinement on the corrosion behavior of magnesium-rare earth alloy MEZ, Journal of Light Metals, 2, (2002), 1–16.

    Article  Google Scholar 

  16. M. Qian, D.H. StJohn, and M.T. Frost, Zirconium alloying and grain refinement of magnesium alloys, in: H.I. Kaplan(Ed) Magnesium Technology 2003, (2003), The Minerals, Metals and Materials Society pp. 209–214.

    Google Scholar 

  17. G. Ben-Hamu, D. Eliezer, K.S. Shin, and S. Cohen, The relation between microstructure and corrosion behaviour of Mg-Y-RE-Zr alloys, Journal of Alloys and Compounds, 341, (2007), 269–276.

    Article  Google Scholar 

  18. Z. Rong-chang, Z. Jin, H. Wei-Jiu, W. Dietzel, K.U. Kainer, C. Blawert, and K.E. Wei, Review of studies on corrosion of magnesium alloys, Transactions of Nonferrous Metals Society of China, (2006), 763–771.

    Google Scholar 

  19. W.C. Neil, M. Forsyth, P.C. Howlett, CR. Hutchinson, and B.R.W. Hinton, Corrosion of magnesium alloy ZE41 — the role of micro structural features, Corrosion Science, 51, (2009), 387–394.

    Article  Google Scholar 

  20. R.H.A. Crawley, Determination of soluble and insoluble zirconium in magnesium alloys, Analytica Chimica Acta, (1961), 281–284.

    Google Scholar 

  21. M. Sun, G. Wu, M.A. Easton, D.H. StJohn, T. Abbott, and W. Ding, A comparison of the micro structure of three Mg-Zr master alloys and their grain refinement efficientcy, in: W.J. Poole and K.U. Kainer(Eds), Mg2012: 9th International Conference on Magnesium Alloys and their Applications, (2012, pp. 873–880.

    Google Scholar 

  22. M. Qian, D.H. StJohn, and M.T. Frost, A new zirconium-rich master alloy for the grain refinement of magnesium alloys, in: K.U. Kainer(Ed) 6th International Conference Magnesium Alloys and their Applications, (2003), Wiley-VCH Verlag Gmbh & Co., pp. 706–712.

    Google Scholar 

  23. M. Qian, L. Zheng, D. Graham, M.T. Frost, and D.H. StJohn, Settling of undissolved zirconium particles in pure magnesium melts, Journal of Light Metals, 1, (2001), 157–165.

    Article  Google Scholar 

  24. M. Qian, D.H. StJohn, M.T. Frost, and M.R. Barnett, Grain refinement of pure magnesium using rolled Zirmax master alloy (Mg-33.3Zr), in: H.I. Kaplan(Ed) Magnesium Technology 2003, (2003), TMS (The Minerals, Metals & Materials Society), pp. 215–220.

    Google Scholar 

  25. M. Qian, D.H. StJohn, and M.T. Frost, Characteristic zirconium-rich coring substructures in Mg-Zr alloys, Scripta Materialia, 46, (2002), 649–654.

    Article  Google Scholar 

  26. M. Qian, D.H. StJohn, and M.T. Frost, Heterogeneous nuclei size in magnesium-zirconium alloys, Scripta Materialia, 50, (2004), 1115–1119.

    Article  Google Scholar 

  27. D.S. Gandel, M.A. Easton, M.A. Gibson, and N. Birbilis, Influence of Mn and Zr on the corrosion of Al- free Mg-alloys, Part 2: Impact of Mn and Zr on Mg-alloy electrochemistry, Corrosion, (Submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Gandel, D.S., Easton, M.A., Gibson, M.A., Abbott, T., Birbilis, N. (2013). The influence of Mg-Zr master alloy microstructure on the corrosion of Mg. In: Hort, N., Mathaudhu, S.N., Neelameggham, N.R., Alderman, M. (eds) Magnesium Technology 2013. Springer, Cham. https://doi.org/10.1007/978-3-319-48150-0_26

Download citation

Publish with us

Policies and ethics