Skip to main content

Effective Creep Response and Uniaxial Tension Behavior of Linear Visco-Elastic Polymer Composites

  • Chapter
Advanced Composites for Aerospace, Marine, and Land Applications II
  • 1542 Accesses

Abstract

Abstract

A micromechanics model was developed to characterize the effective creep response and macroscopic stress-strain behavior of linear viscoelastic polymer composites. The linear viscoelastic behavior of polymer was modeled by hereditary integral. The rate-dependent uniaxial tension behavior of the polymer composites can be calculated using the effective creep compliance coefficients predicted by the proposed model through the hereditary integral for the composites. Numerical examples were used to demonstrate the capability of the proposed model. All calculations were accomplished in the time domain, hence the Laplace transform and inversion commonly used for linearly viscoelastic composites are not needed in this theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raghavan, J. and Meshii, M. (1998). Creep of polymer composites. Composites Science and Technology, 57 (12): 1673–1688.

    Article  Google Scholar 

  2. Barbero, E. J. (1994). Construction: Applications and Design, Lubin’s Handbook of Composites, 2nd edn.

    Google Scholar 

  3. Nemat-Nasser, S. and Hori, M. (1993). Micromechanics: overall properties of heterogeneous materials. Amsterdam: Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  4. Hashin, Z. (1983). Analysis of composite materials-a survey. Journal of Applied Mechanics, 105:481–504.

    Article  Google Scholar 

  5. Christensen, R. M. (1979). Mechanics of composite materials. Dover Publications, Inc. Mineola, New York.

    Google Scholar 

  6. Barbero, E. J. and Luciano, R. (1995). Micromechanical formulas for the relaxation tensor of linear viscoelastic composites with transversely isotropic fibers, International Journal of Solids and Structures, 32 (13): 1859–1872.

    Article  Google Scholar 

  7. Yancey, R. N. and Pindera, M-J. (1990). Micromechanical analysis of the creep response of unidirectional composites, Journal of Engineering Materials and Technology, 112: 157–163.

    Article  Google Scholar 

  8. Li, K, Gao, X. L., and Roy, A. K. (2006). Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites. Mechanics of Advanced Materials and Structures, 13: 317–328.

    Article  Google Scholar 

  9. Wang, Y. M. and Weng, G. J. (1992). The influence of inclusion shape on the overall viscoelastic behavior of composites, Journal of Applied Mechanics, Trans. ASME, 112: 157–163.

    Google Scholar 

  10. Haasemann, G. and Ulbricht, V. (2009). Numerical evaluation of the viscoelastic and viscoplastic behavior of composites, Tchnishe Mechanik, 30 (1–3): 122–135.

    Google Scholar 

  11. Megnis, M., Varna, L, Allen, D. H., and Holmberg, A. (2001). Micromechanical modeling of viscoelastic response of GMT composites, Journal of Composites Materials, 35: 849–882.

    Article  Google Scholar 

  12. Yancey, R. N. and Pindera, M.J. (1990). Micromechanical analysis of the creep response of unidirectional composites, Journal of Engineering Materials and Technology, 112:157–163.

    Article  Google Scholar 

  13. Brinson, L. C. and Lin, W. S. (2003). Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites, Composites Structures, 41:353–367.

    Article  Google Scholar 

  14. Fisher, F. T. and Brinson, L. C. (2003). Viscoelastic interphase in polymer-matrix composites: theoretical models and finite element analysis, Composites Science and Technology, 61:731–748.

    Article  Google Scholar 

  15. Mori, T. and Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, 21:571–574.

    Article  Google Scholar 

  16. Benveniste, Y. (1987). A new approach to the application of Mori-Tanka’s theory in composite materials, Mechanics of Materials, 6:147–157.

    Article  Google Scholar 

  17. Lahellec, N. and Suquet, P. (2007). Effective behavior of linear viscoelastic composites: A time-integration approach, International Journal of Solids and Structures, 44: 507–529.

    Article  Google Scholar 

  18. Naik, A., Abolfathi, N., Karami, G., and Ziejewski, M. (2008). Micromechanical viscoelastic characterization of fibrous composites, Journal of Composites Materials, 42: 1179–1204.

    Article  Google Scholar 

  19. Yu, W. and Tang, T. (2007). Variational Asymptotic Method for Unit Cell Homogenization of Periodically Heterogeneous Materials, International Journal of Solids and Structures, 44: 3738–3755.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Tang, T., Felicelli, S.D. (2015). Effective Creep Response and Uniaxial Tension Behavior of Linear Visco-Elastic Polymer Composites. In: Sano, T., Srivatsan, T.S. (eds) Advanced Composites for Aerospace, Marine, and Land Applications II. Springer, Cham. https://doi.org/10.1007/978-3-319-48141-8_26

Download citation

Publish with us

Policies and ethics