Skip to main content

Influence of Microstructural Features on the Propagation of Microstructurally Short Fatigue Cracks in Structural Steels

  • Chapter
Fatigue of Materials II

Abstract

Cyclically loaded structural steel components are usually designed to endure macroscopic stress amplitudes close to the material’s endurance strength where microcracks initiate due to microstructural inhomogeneities and exhibit strong interactions with the various microstructural features in their neighborhood upon propagating. The current study presents a microstructural model with a capability to quantitatively describe the influence of microstructural features on the growth of cyclic cracks in the decisive, very early fatigue behavior stage. The FE model is based on the crystal plasticity theory and accounts for relative grain orientations. Both the extended finite element method (XFEM) and a coupled damage mechanics approach are used to describe crack opening behavior. The model is implemented to simulate real microcracking events produced in interrupted cyclic multiple-step tests under metallographic observation with temperature change measurements. Furthermore, the model is implemented on virtually created microstructures with altered grain sizes and orientations based on statistical EBSD analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Murakamia, S. Kodamab, S. Konumac, Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions, Int. J. Fatigue 11 (1989) 291–298

    Article  Google Scholar 

  2. J.M. Zhang, S.X. Li, Z.G. Yang. G.Y. Li, W.J. Hui, Y.Q. Weng, Influence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime, Int. J. Fatigue 29 (2007) 765–771

    Article  Google Scholar 

  3. Y. Murakami, Metal Fatigue: Effects of small defects and non-metallic inclusions, Chapter 6, Elsevier (2002) 75–128

    Book  Google Scholar 

  4. M. Sander, Sicherheit und Betriebsfestigkeit von Maschinen und Anlagen, ISBN 978–3-540–77732-8, Springer-Verlag (2008)

    Google Scholar 

  5. M.G. Hebsur, K.P. Abraham and Y.V.R.K. Prasad, Effect of electroslag refining on the fracture toughness and fatigue crack propagation rates in heat treated AISI 4340 steel, Eng. Frac. Mech. 13(1980)851–864

    Article  Google Scholar 

  6. P.R.V. Evans, N.B. Owen, B.E. Hopkins, The effect of purity on fatigue crack growth in a high-strength steel, Eng. Frac. Mech. 3 (1971) 463–468

    Article  Google Scholar 

  7. Y. Murakami, M. Endo, Effects of defects, inclusions and inhomogeneities on fatigue strength, Int. J. Fatigue 16 (1994) 163–182

    Article  Google Scholar 

  8. Y. Murakami, M. Endo, A geometrical parameter for the quantitative estimation of the effects of small defects on fatigue strength of metals, Trans. Jpn. SOC. Mech. Eng. A 49(438) (1983) 127–136

    Article  Google Scholar 

  9. Y. Murakami, S. Fukuda, T. Endo, Effect of micro-hole on fatigue strength (1st Report, Effect of micro-hole (Dia.: 40, 50, 80, 100 and 200 pm) on the Fatigue Strength of 0.13% and 0.46% Carbon Steels), Trans. Jpn. Soc. Mech. Eng. Ser. I, 44(388) (1978) 4003–4013

    Article  Google Scholar 

  10. Y. Murakami, T. Endo, The effects of small defects on the fatigue strength of hard steels, In: E. Sherrat and J.B. Sturgeon (Eds.): Materials, Experimentation and Design in Fatigue, Proc. Fatigue (1981) 431–440

    Google Scholar 

  11. Y. Murakami, S. Kodama, S. Konuma, Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steel, Trans. Jpn. SOC. Mech. Eng. A 54(500) (1988) 688–696

    Article  Google Scholar 

  12. Y. Murakami, M. Shimizu, Effects of non-metallic inclusions, small defects and small cracks on fatigue strength of metals, Trans. Jpn. SOC. Mech. Eng. A 54(499) (1988) 413–425

    Article  Google Scholar 

  13. Y. Murakami, H. Usuki, Prediction of fatigue strength of high-strength steels based on statistical evaluation of inclusion size, Trans. Jpn. Soc. Mech. Eng. A 55(510) (1989) 213–221

    Article  Google Scholar 

  14. Y. Murakami, Quantitative evaluation of effects of defects and non-metallic inclusions of fatigue strength of metals, Tetsu To Hagane 75(8) (1989) 1267–1277

    Google Scholar 

  15. Y. Murakami, Fundamental aspects of fatigue threshold of metals containing small defects, small cracks and non-metallic inclusions — A unified quantitative evaluation and tts application, In: P. Lukas and J. Polak (Eds), Basic mechanisms in fatigue of metals, ACADEMIA (1988) 343–350

    Google Scholar 

  16. D. Dengel, H. Harig, Estimation of the fatigue limit by progressively-increasing load tests, Fatigue Eng. Mater. Struct. 3 (1980) 113–128.

    Article  Google Scholar 

  17. P. Starke, F. Walter, D. Eifler, Fatigue assessment and fatigue life calculation of quenched and tempered SAE 4140 steel based on stress-strain hysteresis, temperature and electrical resistance measurements, Fat. Fract. Eng. Mater. Struct. 30 (2007) 1044–1051.

    Article  Google Scholar 

  18. F. Walther, D. Eifler, Fatigue life calculation of metallic materials, Key Eng. Mat. 345–346 (2007) 1337–1340.

    Article  Google Scholar 

  19. T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Meth. Eng. 45 (1999) 601–620

    Article  Google Scholar 

  20. J. J.C. Remmers, R. de Borst, A. Needleman, The simulation of dynamic crack propagation using the cohesive segments method, Journal of the Mechanics and Physics of Solids 56 (2008) 70–92

    Article  Google Scholar 

  21. J.-H. Song, P. M. A. Areias, T. Belytschko, A method for dynamic crack and shear band propagation with phantom nodes, Int. J. Numer. Meth. Eng. 67 (2006) 868–893

    Article  Google Scholar 

  22. Dassault Systèmes Simulia Corp., Abaqus Analysis User’s Manual, Abaqus 6.11 Online Documentation (2011)

    Google Scholar 

  23. X.-P. Xu, A. Needleman, Numerical Simulations of Fast Crack Growth in Brittle Solids, J. Mech. Phys. Solids 42 (1994) 1397–1434

    Article  Google Scholar 

  24. S. Brinckmann, On the role of dislocations in fatigue crack initiation, doctoral dissertation, Rijksuniversiteit Groningen, ISBN 90–367-2237–3 (2005)

    Google Scholar 

  25. D. Munz, Ermüdsungsverhalten metallischer Werkstoffe, Deutsche Gesellschaft fur Metallkunde (1985) 73–105

    Google Scholar 

  26. G.F. Voronoi, Nouvelles applications des paramètres continuis à la théorie des formes quadratiques, J. Reine Angew. Math. 134 (1908) 198–287

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Sharaf, M. et al. (2013). Influence of Microstructural Features on the Propagation of Microstructurally Short Fatigue Cracks in Structural Steels. In: Srivatsan, T.S., Imam, M.A., Srinivasan, R. (eds) Fatigue of Materials II. Springer, Cham. https://doi.org/10.1007/978-3-319-48105-0_18

Download citation

Publish with us

Policies and ethics