Skip to main content

The High Strain Rate Deformation Behavior of High Purity Magnesium and AZ31B Magnesium Alloy

  • Chapter
Essential Readings in Magnesium Technology

Abstract

The deformation in compression of pure magnesium and AZ31B magnesium alloy, both with a strong basal pole texture, has been investigated as a function of temperature, strain rate, and specimen orientation. The mechanical response of both metals is highly dependent upon the orientation of loading direction with respect to the basal pole. Specimens compressed along the basal pole direction have a high sensitivity to strain rate and temperature and display a concave down work hardening behavior. Specimens loaded perpendicularly to the basal pole have a yield stress that is relatively insensitive to strain rate and temperature and a work hardening behavior that is parabolic and then linearly upwards. Both specimen orientations display a mechanical response that is sensitive to temperature and strain rate. Post mortem characterization of the pure magnesium was conducted on a subset of specimens to determine the microstructural and textural evolution during deformation and these results are correlated with the observed work hardening behavior and strain rate sensitivities were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E.W. Kelley and W.F. Hosford, Trans. AIME, 242 (1968), 654.

    Google Scholar 

  2. D.H. Avery, W.F. Hosford, W.A. Backofen, Trans. AIME, 233 (1965), 71.

    Google Scholar 

  3. M.H. Yoo and J.K. Lee, Phil. Mag. A, 63 (1991), 987.

    Article  Google Scholar 

  4. U.F. Kocks and D.G. Westlake, Trans. AIME, 239 (1967), 1107.

    Google Scholar 

  5. K.H. Eckelmeyer and R.W. Hertzberg, Met. Trans. 1 (1970), 3411.

    Google Scholar 

  6. P. Klimanek and A. Pötzsch, Mater. Sci. Eng. A, 324 (2002), 145.

    Article  Google Scholar 

  7. G.S. Rao and K.L. Murty, Res. Mech., 23 (1988), 363.

    Google Scholar 

  8. M.A. Gharghouri et. A1, Phil. Mag. A, 79 (1999), 1671.

    Article  Google Scholar 

  9. C.N. Tome, R.A. Lebensohn, and U.F. Kocks, Acta Metall. Mater., 39 (1991), 2667.

    Article  Google Scholar 

  10. R.A. Lebensohn and C.N. Tome, Acta Metall., 41 (1993), 2611.

    Article  Google Scholar 

  11. P.A. Turner and C.N. Tomé, Acta Mater., 42 (1994), 4143.

    Article  Google Scholar 

  12. A. Staroselsky and L. Anand, Int. J. of Plasticity 19 (2003), 1843–1864.

    Article  Google Scholar 

  13. S.R. Agnew, C.N. Tome, D.W. Brown, T.M. Holden, and S.C. Vogel, Scripta Mat., 48 (2003) 1003.

    Article  Google Scholar 

  14. S.R. Agnew, M.H. Yoo, and C.N. Tome, Acta Mater. 49 (2001) 4277.

    Article  Google Scholar 

  15. S.R. Agnew, D.W. Brown, S.C. Vogel and T.M. Holden, Mat. Sci. Forum, 404–407 (2002), 747.

    Article  Google Scholar 

  16. R. Gehrmann, M.M. Frommert and G. Gottstein, mat. Sci. Eng.A, 395 (2005), 338.

    Article  Google Scholar 

  17. T. Mukai, M. Yamanoi, H. Watanabe, K. Ishikawa, and K. Highashi, Mater. Trans. 42 (2001), 1177.

    Article  Google Scholar 

  18. K. Isjikawa, H. Watanabe, and T. Mukai, Mat. Lett., 59 (2005), 1511.

    Article  Google Scholar 

  19. G.C. Kaschner and G.T. Gray, Mater. Trans A, 31 (2000) 1997.

    Article  Google Scholar 

  20. E. Cerreta and G.T. Gray, Mater. Trans A, 35 (2004) 1999.

    Article  Google Scholar 

  21. G.E. Dieter, Mechanical Metallurgy, New York: McGraw Hill, Inc., 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Minerals, Metals & Materials Society

About this chapter

Cite this chapter

Livescu, V., Cady, C.M., Cerreta, E.K., Henrie, B.L., Gray, G.T. (2016). The High Strain Rate Deformation Behavior of High Purity Magnesium and AZ31B Magnesium Alloy. In: Mathaudhu, S.N., Luo, A.A., Neelameggham, N.R., Nyberg, E.A., Sillekens, W.H. (eds) Essential Readings in Magnesium Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-48099-2_60

Download citation

Publish with us

Policies and ethics