Skip to main content
  • 1297 Accesses

Abstract

Polyvinylidene fluoride (PVDF) is a smart material owing to its pyro-, piezo- and ferroelectric properties. For practical application, e.g., as a sensor material however; the non-polar, low-energy, α-phase of PVDF must be transformed into polar β-phase. Bacterial cellulose was used to study its effect on α to β-phase transformation in PVDF. Bacterial cellulose produced from Acetobacter xylinum bacteria was incorporated (0.5, 1 and 2% by weight) into PVDF films using solution casting technique. While ultrasonication provided energy for phase transformation, the filler helped retain the β-phase. The evolution of this phase was confirmed and estimated using FTIR and XRD studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jingang, Y.; Hong, L. Sensors Journal, IEEE 2008, 8, (4), 384–391.

    Google Scholar 

  2. Rathod, V. T.; Mahapatra, D. R.; Jain, A.; Gayathri, A. Sensors and Actuators A: Physical 2010, 163, (1), 164–171.

    Article  Google Scholar 

  3. Ya-hong, Z.; Shi-lin, X.; Xi-nong, Z. In Actuating characteristic of laminated PVDF actuators used on a beam with large deformation, Piezoelectricity, Acoustic Waves, and Device Applications, 2008. SPAWDA 2008. Symposium on, 5–8 Dec. 2008, 2008; 2008; pp 284–288.

    Google Scholar 

  4. Ya-hong, Z.; Xi-nong, Z. In Investigation of actuating characteristics of laminated PVDF actuator used on paraboloidal shells, Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), 2010 Symposium on, 10–13 Dec. 2010, 2010; 2010; pp 128–133.

    Google Scholar 

  5. Yu, S.; Zheng, W.; Yu, W.; Zhang, Y.; Jiang, Q.; Zhao, Z. Macromolecules 2009, 42, (22), 8870–8874.

    Article  Google Scholar 

  6. Kang, S. J.; Park, Y. J.; Sung, J.; Jo, P. S.; Park, C; Kim, K. J.; Cho, B. O. Applied Physics Letters 2008, 92, (1), 012921–012923.

    Article  Google Scholar 

  7. Jiang, Y.; Ye, Y.; Yu, J.; Wu, Z.; Li, W.; Xu, J.; Xie, G. Polymer Engineering & Science 2007, 47, (9), 1344–1350.

    Article  Google Scholar 

  8. Takeno, A.; Okui, N.; Kitoh, T.; Muraoka, M.; Umemoto, S.; Sakai, T. Thin Solid Films 1991, 202, (2), 205–211.

    Article  Google Scholar 

  9. Benz, M.; Euler, W. B.; Gregory, O. J. Macromolecules 2002, 35, (7), 2682–2688.

    Article  Google Scholar 

  10. Huang, X.; Jiang, P.; Kim, C; Liu, F.; Yin, Y. European Polymer Journal 2009, 45, (2), 377–386.

    Article  Google Scholar 

  11. Peng, Q.-Y.; Cong, P.-H.; Liu, X.-J.; Liu, T.-X.; Huang, S.; Li, T.-S. Wear 2009, 266, (7–8), 713–720.

    Article  Google Scholar 

  12. Verónica Corral-Flores, Enrique Torres-Moye, Jorge Romero-García, Dario Bueno-Baqués, Ronald F. Ziolo. Materials Science Forum 2010, 644, 33–37.

    Article  Google Scholar 

  13. Hestrin, S.; Schramm, M. Biochem J 1954, 58, (2), 345–52.

    Article  Google Scholar 

  14. Rajesh, P. S. M.; Bodkhe, S.; Kamle, S.; Verma, V. Electronic Materials Letters 2013, (Accepted).

    Google Scholar 

  15. Williams, R. O.; Watts, A. B.; Miller, D. A., Formulating Poorly Water Soluble Drugs. Springer: London, 2012; Vol. 3.

    Book  Google Scholar 

  16. Svensson, A.; Nicklasson, E.; Harrah, T.; Panilaitis, B.; Kaplan, D. L; Brittberg, M.; Gatenholm, P. Biomaterials 2005, 26, (4), 419–431.

    Article  Google Scholar 

  17. Kim, G. H.; Hong, S. M.; Seo, Y. Physical Chemistry Chemical Physics 2009, 11, (44).

    Google Scholar 

  18. Mohammadi, B.; Yousefi, A. A.; Bellah, S. M. Polymer Testing 2007, 26, (1), 42–50.

    Article  Google Scholar 

  19. Mago, G.; Kalyon, D. M.; Fisher, F. T. Journal of Nanomaterials 2008, 2008.

    Google Scholar 

  20. Huang, S.; Yee, W. A.; Tjiu, W. C; Liu, Y.; Kotaki, M.; Boey, Y. C. F.; Ma, J.; Liu, T.; Lu, X. Langmuir 2008, 24, (23), 13621–13626.

    Article  Google Scholar 

  21. Shah, D.; Maiti, P.; Gunn, E.; Schmidt, D. F.; Jiang, D. D.; Batt, C. A.; Giannelis, E. P. Advanced Materials 2004,16, (14), 1173–1177.

    Article  Google Scholar 

  22. R.J. Gregorio; Nociti, N. C. P. d. S. Journal of Physics D: Applied Physics 1995, 28, (2), 432.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Verma, V., Rajesh, P.S.M., Bodkhe, S., Kamle, S. (2014). Bacterial Cellulose Enhances Beta phase in PVDF. In: Sano, T., Srivatsan, T.S., Peretti, M.W. (eds) Advanced Composites for Aerospace, Marine, and Land Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-48096-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48096-1_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48592-8

  • Online ISBN: 978-3-319-48096-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics