Skip to main content

Sensing Through Surface Plasmon Resonance Technique

  • Chapter
  • First Online:
Reviews in Plasmonics 2016

Part of the book series: Reviews in Plasmonics ((RIP,volume 2016))

Abstract

The optical phenomenon, surface plasmon resonance (SPR) has become extremely popular owing to its high sensitivity, label-free and non-destructive measurement towards any molecular specific interaction. This is one of the widely used phenomena for biological, chemical and gas sensing devices. There are different ways that the SPR phenomenon can be employed for such sensing applications. In this chapter, we will review some of the important SPR techniques and their applications in sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z PhysA Hadrons Nucl 216:398

    Article  CAS  Google Scholar 

  2. Raether H (1988) Surface plasmon on smooth and rough surfaces and grating. Springer, Berlin

    Google Scholar 

  3. Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. ZNatureforsch 23A:2153

    Google Scholar 

  4. Novotny L, Hecht B (2008) Principles of nano-optics. Cambridge University Press, New York

    Google Scholar 

  5. Devanarayanan VP, Manjuladevi V, Poonia M, Gupta RK, Gupta SK, Akhtar J (2016) Measurement of optical anisotropy in ultrathin films using surface plasmon resonance. J MolStruct 1103:281

    Article  CAS  Google Scholar 

  6. Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14:5636

    Article  CAS  Google Scholar 

  7. Daghestani HN, Day BW (2010) Theory and application of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors. Sensors 10:9630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hahnefeld C, Drewianka S, Herberg FW (2004) Determination of kinetic data using surface plasmon resonance biosensors. Methods Mol Med 94:299

    CAS  PubMed  Google Scholar 

  9. Tiwari K, Sharma SC (2014) Surface plasmon based sensor with order-of-magnitude higher sensitivity to electric field induced changes in dielectric environment at metal/nematic liquid-crystal interface. Sens Actuators A 216:128

    Article  CAS  Google Scholar 

  10. Mohanty BC, Kasiviswanathan S (2005) Two-prism setup for surface plasmon resonance studies. Rev Sci Instr 76:033103

    Article  Google Scholar 

  11. Liang H, Miranto H, Granqvist N, Sadowski JW, Viitala T, Wang B, Ylipertulla M (2010) Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films. Sens Actuators B 149:212

    Article  CAS  Google Scholar 

  12. Liu Y, Xu S, Tang B, Wang Y, Zhou J, Zheng X, Zhao B, Xu W (2010) Simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering. Rev Sci Instr 81:036105

    Article  Google Scholar 

  13. Devanarayanan VP, Manjuladevi V, Gupta RK (2016) Surface plasmon resonance sensor based on a new opto-mechanical scanning mechanism. Sens Actuators B 227:643

    Article  CAS  Google Scholar 

  14. Liu Y, Liu Q, Chen S, Cheng F, Wang H, Peng W (2015) Surface plasmon resonance biosensor based on smart phone platform. Sci Rep 5:12864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hickel W, Kamp D, Knoll W (1989) Surface plasmon microscopy. Nature 339:186

    Article  Google Scholar 

  16. Haussling L, Ringsdorf H, Schmitt FJ, Knoll W (1991) Biotin-functionalized self-assembled monolayers on gold: surface plasmon optical studies of specific recognition reactions. Langmuir 7:1837

    Article  Google Scholar 

  17. Evans SD, Flynn TM, Ulman A (1995) Self-assembled multilayer formation on predefined templates. Langmuir 11:3811

    Article  CAS  Google Scholar 

  18. HickelW KW (1990) Surface plasmon microscopy of lipid layers. Thin Solid Films 187:349

    Article  Google Scholar 

  19. Duschl C, LileyM LH, Ghandi A, Zakeeruddin SM, Stahlberg H, Dabochet J, Nemetz A, Knoll W, Vogel H (1996) Sulphur-bearing lipids for the covalent attachment of supported lipid bilayers to gold surfaces: a detailed characterisation and analysis. Mater Sci Eng C 4:7–18

    Article  Google Scholar 

  20. Brockman JM, Nelson BP, Corn RM (2000) Surface plasmon resonance imaging measurements of ultrathin organic thin films. Annu Rev Phys Chem 51:41

    Article  CAS  PubMed  Google Scholar 

  21. Wong CL, Olivo M (2014) Surface plasmon resonance imaging:a review. Plasmonics 9:809

    Article  CAS  Google Scholar 

  22. Liedberg B, Nylander C, Lundstrom I (1983) Surface plasmon resonance for gas detection and biosensing. Sens Actuat 4:229

    Article  Google Scholar 

  23. Wu LP, Li YF, Huang CZ, Zhang Q (2006) Visual detection of sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles. Anal Chem 78:5570

    Article  CAS  PubMed  Google Scholar 

  24. Ock K, Jang G, Roh Y, KimS KJ, Koh K (2001) Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface. Microchem J 70:301

    Article  CAS  Google Scholar 

  25. Mauriz E, Calle A, Manclus JJ, Montoya A, Escuela AM, Sendra JR, Lechuga LM (2006) Single and multi-analyte surface plasmon resonance assays for simultaneous detection of cholinesterase inhibiting pesticides. Sens Actuators B 118:399

    Article  CAS  Google Scholar 

  26. Mauriz E, Calle A, Abad A, Montoya A, Hildebrandt A, Barcelo D, Lechuga LM (2006) Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor. Biosens Bioelectron 21:2129

    Article  CAS  PubMed  Google Scholar 

  27. Mauriz E, Calle A, Lechuga LM, Quintana J, Montoya A, Manclus JJ (2006) Real-time detection of chlorpyrifos at part per trillion levels in ground, surface and drinking water samples by a portable surface plasmon resonance immunosensor. Anal Chim Acta 561:40

    Article  CAS  Google Scholar 

  28. Mauriz E, Calle A, Manclus JJ, Montoya A, Hildebrandt A, Barcelo D, Lechuga LM (2007) Optical immunosensor for fast and sensitive detection of DDT and related compounds in river water samples. Biosens Bioelectron 22:1410

    Article  CAS  PubMed  Google Scholar 

  29. Svitel J, Dzgoev A, Ramanathan K, Danielsson B (2000) Surface plasmon resonance based pesticide assay on a renewable biosensing surface using the reversible concanavalin a monosaccharide interaction. Biosens Bioelectron 15:411

    Article  CAS  PubMed  Google Scholar 

  30. Miura N, Sasaki M, Gobi KV, Kataoka C, Shoyama Y (2003) Highly sensitive and selective surface plasmon resonance sensor for detection of sub-ppb levels of benzo[a]pyrene by indirect competitive immunoreaction method. Biosens Bioelectron 18:953

    Article  CAS  PubMed  Google Scholar 

  31. Shankaran DR, Gobi KV, Sakai T, Matsumoto K, Imato T, Toko K, Miura N (2005) A novel surface plasmon resonance immunosensor for 2,4,6-trinitrotoluene (TNT) based on indirect competitive immunoreaction: a promising approach for on-site landmine detection. IEEE Sens 5:616

    Article  CAS  Google Scholar 

  32. Nedelkov D, Rasooly A, Nelson RW (2000) Multitoxin biosensor–mass spectrometry analysis: a new approach for rapid, real-time, sensitive analysis of staphylococcal toxins in food. Int J Food Microbiol 60:1

    Article  CAS  PubMed  Google Scholar 

  33. Nedelkov D, RWc N (2003) Detection of staphylococcal enterotoxin B via biomolecular interaction analysis mass spectrometry. Appl Environ Microbiol 69:5212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Traynor IM, Plumpton L, Fodey TL, Higgins C, Elliott CT (2006) Immunobiosensor detection of domoic acid as a screening test in bivalve molluscs: comparison with liquid chromatography-based analysis. J AOAC Int 89:868

    CAS  PubMed  Google Scholar 

  35. Tudos AJ, Lucas-van den Bos ER, Stigter EC (2003) Rapid surface plasmon resonance-based inhibition assay of deoxynivalenol. J Agric Food Chem 51:5843

    Article  PubMed  Google Scholar 

  36. Gillis EH, Gosling JP, Sreenan JM, Kane M (2002) Development and validation of a biosensor-based immunoassay for progesterone in bovine milk. J Immunol Methods 267:131

    Article  CAS  PubMed  Google Scholar 

  37. Mohammed I, Mullett WM, Lai EPC, Yeung JM (2001) Is biosensor a viable method for food allergen detection. Anal Chim Acta 444:97

    Article  CAS  Google Scholar 

  38. Samsonova JV, Uskova NA, Andresyuk AN, Franek M, Elliott CT (2004) Biacore biosensor immunoassay for 4-nonylphenols: assay optimization and applicability for shellfish analysis. Chemosphere 57:975

    Article  CAS  PubMed  Google Scholar 

  39. Haasnoot W, Olieman K, Cazemier G, Verheijen R (2001) Direct biosensor immunoassays for the detection of nonmilk proteins in milk powder. J Agric Food Chem 49:5201

    Article  CAS  PubMed  Google Scholar 

  40. Oh BK, Kim YK, Bae YM, Lee WH, Choi JW (2002) Detection of Escherichia coli O157:H7 using immunosensor based on surface plasmon resonance. J Microbiol Biotechnol 12:780

    Google Scholar 

  41. Oh BK, Lee W, Kim YM, Lee WH, Choi JW (2004) Surface plasmon resonance immunosensor using self-assembled protein G for the detection of salmonella paratyphi. J Biotechnol 111

    Google Scholar 

  42. Dillon PP, Daly SJ, Manning BM, Kennedy RO (2003) Immunoassay for the determination of morphine-3-glucuronide using a surface plasmon resonance-based biosensor. Biosens Bioelectron 18:217

    Article  CAS  PubMed  Google Scholar 

  43. Masson JF, Obando L, Beaudoin S, Booksh K (2004) Sensitive and real-time fiber-optic-based surface plasmon resonance sensors for myoglobin and cardiac troponin. Talanta 62:865

    Article  CAS  PubMed  Google Scholar 

  44. Besselink GA, Kooyman RP, van Os PJ, Engbers GH, Schasfoort RB (2004) Signal amplification on planar and gel-type sensor surfaces in surface plasmon resonance-based detection of prostate-specific antigen. Anal Biochem 333:165

    Article  CAS  PubMed  Google Scholar 

  45. Chung JW, Bernhardt R, Pyun JC (2006) Additive assay of cancer marker CA 19-9 by SPR biosensor. Sens Actuators B 118:28

    Article  CAS  Google Scholar 

  46. Li Y, Lee HJ, Corn RM (2007) Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging. Anal Chem 79:1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Regnault V, Boehlen F, Ozsahin H, Wahl D, de Groot PG, Lecompte T, de Moerloose P (2005) Anti-protein S antibodies following a varicella infection: detection, characterization and influence on thrombin generation. J Thromb Haemostasis 3:1243

    Article  CAS  Google Scholar 

  48. Rojo N, Ercilla G, Haro I (2003) GB virus C (GBV-C)/Hepatitis G virus (HGV): Towards the design of synthetic peptides-based biosensors for immunodiagnosis of GBV-C/HGV infection. Curr Protein Pept Sci 4:291

    Article  CAS  PubMed  Google Scholar 

  49. Ladd J, Boozer C, Yu Q, Chen S, Homola J, Jiang S (2004) DNA-directed protein immobilization on mixed self-assembled monolayers via a streptavidin bridge. Langmuir 20:8090

    Article  CAS  PubMed  Google Scholar 

  50. Miyashita M, Shimada T, Miyagawa H, Akamatsu M (2005) Surface plasmon resonance-based immunoassay for 17beta-estradiol and its application to the measurement of estrogen receptor-binding activity. Anal Bioanal Chem 381:667

    Article  CAS  PubMed  Google Scholar 

  51. Gobi KV, Iwasaka H, Miura N (2007) Self-assembled PEG monolayer based SPR immunosensor for label-free detection of insulin. Biosens Bioelectron 22:1382

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We are thankful to Department of Science and Technology, India for financial support for the development of a SPR instrument as in [13]. Thanks to Dr V. Manjuladevi for discussion. Thanks are also due to University of Colorado for providing local infrastructure during the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gupta, R.K. (2017). Sensing Through Surface Plasmon Resonance Technique. In: Geddes, C. (eds) Reviews in Plasmonics 2016. Reviews in Plasmonics, vol 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-48081-7_3

Download citation

Publish with us

Policies and ethics