Skip to main content

Accelerator-Based Photon Sources

  • Living reference work entry
  • First Online:
Handbook of Particle Detection and Imaging
  • 174 Accesses

Abstract

For about one century, X-rays have been the primary tool to probe the atomic structure of matter. With the advent of synchrotron radiation sources in the 1960s and more recently free-electron lasers, the photon flux, coherence, spectral brightness, and tunability of short wavelength radiation has improved dramatically. After briefly reviewing the history of X-ray sources, the generation of radiation by accelerating electrons will be addressed. Synchrotron radiation is produced by circular acceleration of relativistic electrons in magnetic fields. Therefore, the discussion in this paper focuses on linear and circular particle accelerators, on the principles of particle optics as well as on magnetic devices called wigglers and undulators. After giving a brief overview of the applications of synchrotron radiation, the newly emerging radiation sources, in particular novel storage rings and free-electron lasers, will be discussed. It will become clear that X-ray science is far from settling into a routine but is presently undergoing a more rapid development than ever.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ackermann S et al (2013) Generation of coherent 19- and 38-nm radiation at a free-electron laser directly seeded at 38 nm. Phys Rev Lett 111:114801

    Article  ADS  Google Scholar 

  • Aiba M, Boege M, Milas N, Streun A (2012) Ultra low vertical emittance at SLS through systematic and random optimization. Nucl Instrum Methods A 694:133

    Article  ADS  Google Scholar 

  • Allaria E et al (2012) Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat Photonics 6:699

    Article  ADS  Google Scholar 

  • Amann J et al (2012) Demonstration of self-seeding in a hard-X-ray free-electron laser. Nat Photonics 6:693

    Article  ADS  Google Scholar 

  • Andruszkow J et al (2000) First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength. Phys Rev Lett 85:3825

    Article  ADS  Google Scholar 

  • Ayyer K et al (2015) Perspectives for imaging single protein molecules with the present design of the European XFEL. Struct Dyn 2:041702

    Article  Google Scholar 

  • Balewski K (2010) Commissioning of PETRA III, Proceedings of the International Particle Accelerator Conference, Kyoto, p 1280. www.jacow.org

    Google Scholar 

  • Ban N et al (2000) The complete atomic structure of the large ribosomal subunit at 2.4 angstrom resolution. Science 289:905

    Article  ADS  Google Scholar 

  • Bilderback DH et al (2009) Energy recovery linac (ERL) coherent hard X-ray sources. New J Phys 12:035011

    Article  Google Scholar 

  • Bonse U, Bush F (1996) X-ray computed microtomography using synchrotron radiation. Prog Biophys Mol Biol 66:133

    Article  Google Scholar 

  • Brown G et al (1983) Wiggler and undulator magnets – a review. Nucl Instrum Methods 208:65

    Article  Google Scholar 

  • Casalbuoni S et al (2006) Generation of X-ray radiation in a storage ring by a superconductive cold-bore in-vacuum undulator. Phys Rev Spec Top Accel Beams 9:010702

    Article  ADS  Google Scholar 

  • Chao AW (1993) Physics of collective beam instabilities in high energy accelerators. Wiley, New York

    Google Scholar 

  • Chasman R, Green GK, Rowe EM (1975) Preliminary design of a dedicated synchrotron radiation facility. IEEE Trans Nucl Sci 22:1765

    Article  ADS  Google Scholar 

  • Chergui M, Zewail AH (2009) Electron and X-ray methods of ultrafast structural dynamics: advances and applications. ChemPhysChem 10:28

    Article  Google Scholar 

  • Coolidge WD (1913) U.S. Patent 1,203,495 (application filed 1913)

    Google Scholar 

  • Dik J et al (2008) Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping. Anal Chem 80:6436

    Article  Google Scholar 

  • Dill T et al (1998) Intravenous coronary angiography with synchrotron radiation. Eur J Phys 19:499

    Article  Google Scholar 

  • Einfeld D, Schaper J, Plesko M (1995) Design of a diffraction limited light source (DIFL). In: Proceedings of the 1995 particle accelerator conference, Dallas, p 177. www.jacow.org

  • Eisebitt S et al (2004) Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432:885

    Article  ADS  Google Scholar 

  • Elder FR, Gurewitsch AM, Langmuir RV, Pollock HC (1947) Radiation from electrons in a synchrotron. Phys Rev 71:829

    Article  ADS  Google Scholar 

  • Emma P et al (2010) First lasing and operation of an ångstrom-wavelength free-electron laser. Nat Photonics 4:641

    Article  ADS  Google Scholar 

  • Ericsson M, Johansson M (2016) Integrated multimagnet systems. In: Jaeschke EJ, Khan S, Schneider JR, Hastings JB (eds) Synchrotron light sources and free-electron lasers. Springer, Cham, p 461

    Google Scholar 

  • Feikes J et al (2011) Metrology light source: the first electron storage ring optimized for generating coherent THz radiation. Phys Rev Special Topics Accel Beams 14:030705

    Article  ADS  Google Scholar 

  • Fuchs M et al (2009) Laser-driven soft-X-ray undulator source. Nat Phys 5:826

    Article  Google Scholar 

  • Guo J, Raubenheimer T (2002) Low emittance e+e storage rings using bending magnets with longitudinal gradient’. In: Proceedings of the 2002 European Particle Accelerator Conference, Paris, p 1136. www.jacow.org

  • Hall CC et al (2015) Measurement and simulation of the impact of coherent synchrotron radiation on the Jefferson Laboratory energy recovery linac electron beam. Phys Rev Spec Top Accel Beams 18:030706

    Article  ADS  Google Scholar 

  • Hara T et al (1998) In-vacuum undulators of SPring-8. J Synchrotron Rad 5:403

    Article  Google Scholar 

  • Hara T et al (2004) Cryogenic permanent magnet undulators. Phys Rev Spec Top Accel Beams 7:050702

    Article  ADS  Google Scholar 

  • Hemberg O, Otendal M, Hertz HM (2003) Liquid-metal jet anode electron-impact X-ray source. Appl Phys Lett 83:1483

    Article  ADS  Google Scholar 

  • Hemsing E et al (2016) Echo-enabled harmonics up to the 75th order from precisely tailored electron beams. Nat Photonics 10:512

    Article  ADS  Google Scholar 

  • Heuberger A (1985) X-ray lithography with synchrotron radiation. Z Phys B Condensed Matter 61:473

    Article  ADS  Google Scholar 

  • Holldack K et al (2006) Femtosecond terahertz radiation from femtoslicing at BESSY. Phys Rev Lett 96:054801

    Article  ADS  Google Scholar 

  • Hubert N et al (2009) Global orbit feedback systems down to DC using fast and slow correctors. In: Proceedings of the DIPAC 2009, Basel, p 27. www.jacow.org

  • Ishikawa T et al (2012) A compact X-ray free-electron laser emitting in the sub-angstrom regime. Nat Photonics 6:540

    Article  ADS  Google Scholar 

  • Joho W, Marchand P, Rivkin L, Streun A (1994) Design of a Swiss Light Source (SLS), In: Proceedings of the 1994 European Particle Accelerator Conference, London, p 627. www.jacow.org

  • Kamitsubo H (1997) First commissioning of SPring-8. In: Proceedings of the 1997 Particle Accelerator Conference, Vancouver, p 6. www.jacow.org

  • Khan S (2006) Collective phenomena in synchrotron radiation sources. Springer, Berlin

    Google Scholar 

  • Khan S (2016) Ultrashort pulses from synchrotron radiation sources. In: Jaeschke EJ, Khan S, Schneider JR, Hastings JB (eds) Synchrotron light sources and free-electron lasers. Springer, Cham, p 51

    Google Scholar 

  • Klein R, Thornagel R, Ulm G (2010) From single photons to milliwatt radiant power – electron storage rings as radiation sources with high dynamic range. Metrologia 47:R33

    Article  ADS  Google Scholar 

  • Kondratenko AM, Saldin EL (1980) Generation of coherent radiation by a relativistic electron beam in an ondulator. Part Accel 10:207

    Google Scholar 

  • Koningsberger DC, Prins R (1988) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York

    Google Scholar 

  • Laclare JL (1993) Commissioning and performance of the ESRF, Proceedings of the 1993 Particle Accelerator Conference, Washington, p 1427. www.jacow.org

  • Lee SY (1996) Emittance optimization in three- and multiple-bend achromats. Phys Rev E 54:1940

    Article  ADS  Google Scholar 

  • Leemans WP et al (2014) Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys Rev Lett 113:245002

    Article  ADS  Google Scholar 

  • Madden RP, Codling K (1963) New autoionizing atomic energy levels in He, Ne, and Ar. Phys Rev Lett 10:516

    Article  ADS  Google Scholar 

  • Madey JMJ (2010) Invention of the free electron laser. In: Chao AW, Chou W (eds) Review of accelerator science and technology, vol 3. World Scientific, p 1

    Google Scholar 

  • Madsen A, Sinn H (2017) Europe enters the extreme X-ray era. CERN Courier 57(6):19

    Google Scholar 

  • Martin MM (1988) Daresbury SRS. Sync Rad News 1:3:14

    Article  Google Scholar 

  • Müller A-S, Schwarz A (2016) Accelerator-based THz radiation sources. In: Jaeschke EJ, Khan S, Schneider JR, Hastings JB (eds) Synchrotron light sources and free-electron lasers. Springer, Cham, p 83

    Google Scholar 

  • Nagaoka R, Wrulich A (2007) Emittance minimisation with longitudinal dipole field variation. Nucl Instrum Methods A 575:292

    Article  ADS  Google Scholar 

  • Ohkuma H (2008) Top-up operation in light sources. Proceedings of the 2008 European Particle Accelerator Conference, Genova, p 36. www.jacow.org

  • Revol J-L et al (2018) Status of the ESRF-extremely brilliant source project. In: Proceedings of the 2018 International Particle Accelerator Conference, Vancouver, p 2882. www.jacow.org

  • Ribič PR et al (2019) Coherent soft X-ray pulses from an echo-enabled harmonic generation free-electron laser, Nat Photonics 13:555

    Article  Google Scholar 

  • Rodrigues ARD et al (2018) SIRIUS light source status report. In: Proceedings of the 2018 international particle accelerator conference, Vancouver, p 2886. www.jacow.org

  • Röntgen WC (1895) Ueber eine neue Art von Strahlen (Vorläufige Mittheilung). In: Sitzungsberichte der Würzburger Physik.-Medic.-Gesellschaft

    Google Scholar 

  • Sasaki S et al (1994) First observation of undulator radiation from APPLE-1. Nucl Instrum Methods A 347:87

    Article  ADS  Google Scholar 

  • Schmidt DA et al (2009) Rattling in the cage: ions as probes of sub-picosecond water network dynamics. J Am Chem Soc 131:18512

    Article  Google Scholar 

  • Schmüser P, Dohlus M, Rossbach J, Behrens C (2014) Free-electron lasers in the ultraviolet and X-ray regime. Springer International Publishing, Cham

    Book  Google Scholar 

  • Shintake T (2003) Real-time animation of synchrotron radiation. Nucl Instrum Methods A 507:89; The program Radiation2D 2.0 can be downloaded from http://www-xfel.spring8.or.jp

  • Stöhr J et al (1993) Element-specific magnetic microscopy with circularly polarized light. Science 259:658

    Article  ADS  Google Scholar 

  • Streun A (2014) The anti-bend cell for ultralow emittance storage rings. Nucl Instrum Methods A 737:148

    Article  ADS  Google Scholar 

  • Stupakov G (2009) Using the beam-echo effect for generation of short-wavelength radiation. Phys Rev Lett 102:074801

    Article  ADS  Google Scholar 

  • Tavares PF, Leemans SC, Sjöström M, Andersson Å (2014) The MAX IV storage ring project. J Synchrotron Rad 21:862

    Article  Google Scholar 

  • Teytelman D (2016) Coupled-bunch instabilities in storage rings and feedback systems. In: Jaeschke EJ, Khan S, Schneider JR, Hastings JB (eds) Synchrotron light sources and free-electron lasers. Springer, Cham, p 605

    Google Scholar 

  • Tigner M (1965) A possible apparatus for electron clashing-beam experiments. Il Nuovo Cimento 37:1228

    Article  ADS  Google Scholar 

  • Wang G (2017) Commissioning of the Dalian coherent light source. In: Proceedings of the 2017 Particle Accelerator Conference, Copenhagen, p 2709. www.jacow.org

  • Watson JD, Crick FHC (1953) A structure for deoxyribose nucleic acid. Nature 171:737

    Article  ADS  Google Scholar 

  • Wille K (2001) The physics of particle accelerators. An introduction. Oxford University Press, Oxford

    Google Scholar 

  • Young ML (2012) Archaeometallurgy using synchrotron radiation: a review. Rep Prog Phys 75:036504

    Article  ADS  Google Scholar 

  • Yu L-H et al (2000) High-gain harmonic-generation free-electron laser. Science 289:932

    Article  ADS  Google Scholar 

  • Yun W et al (1999) Nanometer focusing of hard X-rays by phase zone plates. Rev Sci Instrum 70:2238

    Article  ADS  Google Scholar 

  • Zholents AA, Zolotorev MS (1996) Femtosecond X-ray pulses of synchrotron radiation. Phys Rev Lett 76:912

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaukat Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Khan, S., Wille, K. (2019). Accelerator-Based Photon Sources. In: Fleck, I., Titov, M., Grupen, C., Buvat, I. (eds) Handbook of Particle Detection and Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-47999-6_8-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47999-6_8-2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47999-6

  • Online ISBN: 978-3-319-47999-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics