Skip to main content

Infant and Childhood Development: Intersections Between Development and Language Experience

  • Chapter
  • First Online:
The Frequency-Following Response

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 61))

Abstract

This chapter provides an overview of the development and plasticity of the neural encoding of speech and non-speech stimuli at the subcortical level with an emphasis on the influence of an individual’s language experience during infancy and childhood. Sections of this chapter are developed based upon a theoretical framework to embrace all possible sources and interactions that may have a significant effect on the development of the auditory system during the early stages of life. The discussion begins with the acoustic environment of a human fetus and the possible influence of prenatal listening experience on the development of the auditory system at the subcortical level. Next, the development during an infant’s immediate postnatal days and first year of life are presented. Developmental trajectories and possible influences of linguistic experience on speech processing, as illustrated by the many aspects of neural encoding (e.g., tracking acuity, pitch strength, and the spectral and timing accuracy at the fundamental frequency, harmonics, and speech formants) are discussed. The presentation continues through childhood, which manifests itself as exponential growth of the developmental trajectory and adaptation of the auditory system. Neural encoding of the various aspects of human speech is described as it pertains to children situated in a quiet or noisy acoustic environment. The effects of acquiring more than one language, sequentially or simultaneously, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdala, C., & Folsom, R. C. (1995). The development of frequency resolution in humans as revealed by the auditory brain-stem response recorded with notched-noise masking. The Journal of the Acoustical Society of America, 98, 921–930.

    Article  CAS  PubMed  Google Scholar 

  • Abrams, R. M., Gerhardt, K. J., Griffiths, S. K., Huang, X., & Antonelli, P. J. (1998a). Intrauterine sounds in sheep. Journal of Sound and Vibration, 216, 539–542.

    Article  Google Scholar 

  • Abrams, R. M., Griffiths, S. K., Huang, X., Sain, J., et al. (1998b). Fetal music perception: The role of sound transmission. Music Perception, 15, 307–317.

    Article  Google Scholar 

  • Aiken, S. J., & Picton, T. W. (2006). Envelope following responses to natural vowels. Audiology and Neurotology, 11, 213–232.

    Article  PubMed  Google Scholar 

  • Aiken, S. J., & Picton, T. W. (2008). Envelope spectral frequency–following responses to vowel sounds. Hearing Research, 245, 35–47.

    Article  PubMed  Google Scholar 

  • Anderson, S., Parbery-Clark, A., White-Schwoch, T., & Kraus, N. (2015). Development of subcortical speech representation in human infants. The Journal of Acoustical Society of America, 137, 3346–3355.

    Article  Google Scholar 

  • Bidelman, G. M., Gandour, J. T., & Krishnan, A. (2011). Musicians and tone-language speakers share enhanced brainstem encoding but not perceptual benefits for musical pitch. Brain and Cognition, 77, 1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brauer, J., Anwander, A., & Friederici, A. (2011). Neuroanatomical prerequisites for language functions in the maturing brain. Cerebral Cortex, 21, 459–466.

    Article  PubMed  Google Scholar 

  • Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plasticity: From synapses to maps. Annual Review of Neuroscience, 21, 149–186.

    Article  CAS  PubMed  Google Scholar 

  • Butler, B. E., & Trainor, L. J. (2013). Brief pitch-priming facilitates infants’ discrimination of pitch-evoking noise: Evidence from event-related potentials. Brain and Cognition, 83, 271–278.

    Article  PubMed  Google Scholar 

  • Carral, V., Huotilainen, M., Ruusuvirta, T., Fellman, V., et al. (2005). A kind of auditory ‘primitive intelligence’ already present at birth. European Journal of Neuroscience, 21, 3201–3204.

    Article  PubMed  Google Scholar 

  • Dinnsen, D. (1992). Variation in developing and fully developed phonetics inventories. In C. A. Ferguson, L. Menn, & C. Stoel-Gammon (Eds.), Phonological development: Models, research, implications (pp. 191–210). Timonium, MD: York Press.

    Google Scholar 

  • Echteler, S. M., Arjmand, E., & Dallos, P. (1989). Developmental alterations in the frequency map of the mammalian cochlea. Nature, 14, 147–149.

    Article  Google Scholar 

  • Eggermont, J. J., & Moore, J. K. (2012). Morphological and functional development of the auditory nervous system. In L. Werner, R. R. Fay, & A. N. Popper (Eds.), Human auditory development (pp. 61–106). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Eimas, P. D., Siqueland, E. R., Jusczyk, P., & Vigorito, J. (1971). Speech perception in infants. Science, 171, 303–306.

    Article  CAS  PubMed  Google Scholar 

  • Frenz, D. A., McPhee, J. R., & Van De Water, T. R. (2001). Structural and functional development of the ear. In A. F. Jahn & J. Santos-Sacchi (Eds.), Physiology of the ear (pp. 191–214). San Diego: Singular Thomson Learning.

    Google Scholar 

  • Friederici, A. D., Friedrich, M., & Christophe, A. (2007). Brain responses in 4-month-old infants are already language specific. Current Biology, 17, 1208–1211.

    Article  CAS  PubMed  Google Scholar 

  • Friedrich, M., & Friederici, A. D. (2010). Maturing brain mechanisms and developing behavioral language skills. Brain and Language, 114, 66–71.

    Article  PubMed  Google Scholar 

  • Gardi, J., Salamy, A., & Mendelson, T. (1979). Scalp-recorded frequency-following responses in neonates. Audiology: Journal of Auditory Communication, 18(6), 494–506.

    Article  CAS  Google Scholar 

  • Gelman, S. R., Wood, S., Spellacy, W. N., & Abrams, R. M. (1982). Fetal movements in response to sound stimulation. American Journal of Obstetrics and Gynecology, 143, 484–485.

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt, K. J., & Abrams, R. M. (2000). Fetal exposures to sound and vibroacoustic stimulation. Journal of Perinatology, 20, S20–S29.

    Article  Google Scholar 

  • Griffiths, S. K., Brown, W. S., Jr., Gerhardt, K. J., Abrams, R. M., & Morris, R. J. (1994). The perception of speech sounds recorded within the uterus of a pregnant sheep. The Journal of Acoustical Society of America, 96, 2055–2063.

    Article  CAS  Google Scholar 

  • Grossmann, T., Striano, T., & Friederici, A. D. (2007). Developmental changes in infants’ processing of happy and angry facial expressions: A neurobehavioral study. Brain and Cognition, 64, 30–41.

    Article  PubMed  Google Scholar 

  • Hall, J. W., III. (2006). New handbook of auditory evoked responses. New York: Pearson.

    Google Scholar 

  • He, C., Hotson, L., & Trainor, L. J. (2007). Mismatch responses to pitch changes in early infancy. Journal of Cognitive Neuroscience, 19, 878–892.

    Article  PubMed  Google Scholar 

  • Hollich, G., Hirsh-Pasek, K., Golinkoff, R., Brand, R. J., et al. (2000). Breaking the language barrier: An emergentist coalition model for the origins of word learning. Monographs of the Society for Research in Child Development (Serial No. 262), 65, 1–123.

    Google Scholar 

  • Hornickel, J., & Kraus, N. (2013). Unstable representation of sound: A biological marker of dyslexia. The Journal of Neuroscience, 33, 3500–3504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387, 167–178.

    Article  CAS  PubMed  Google Scholar 

  • Jakobson, R. (1968). Child language, aphasia and phonological universals. The Hague and Paris: Mouton.

    Book  Google Scholar 

  • Jeng, F.-C., Chung, H.-K., Lin, C.-D., Dickman, B. M., & Hu, J. (2011a). Exponential modeling of human frequency-following responses to voice pitch. International Journal of Audiology, 50, 582–593.

    Article  PubMed  Google Scholar 

  • Jeng, F.-C., Hu, J., Dickman, B. M., Montgomery-Reagan, K., et al. (2011b). Cross-linguistic comparison of frequency-following responses to voice pitch in American and Chinese neonates and adults. Ear and Hearing, 32, 699–707.

    Article  PubMed  Google Scholar 

  • Jeng, F.-C., Peris, K. S., Hu, J., & Lin, C.-D. (2013). Evaluation of an automated procedure for detecting frequency-following responses in American and Chinese neonates. Perceptual and Motor Skills, 116, 456–465.

    Article  PubMed  Google Scholar 

  • Jeng, F.-C., Schnabel, E. A., Dickman, B. M., Hu, J., et al. (2010). Early maturation of frequency-following responses to voice pitch in infants with normal hearing. Perceptual and Motor Skills, 111, 765–784.

    Article  PubMed  Google Scholar 

  • Jusczyk, P. (1997). The discovery of spoken language. Cambridge (MA): MIT Press.

    Google Scholar 

  • Kilgard, M. P., & Merzenich, M. M. (1998). Plasticity of temporal information processing in the primary auditory cortex. Nature Neuroscience, 1, 727–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kral, A., & Eggermont, J. J. (2007). What’s to lose and what’s to learn: Development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Research Reviews, 56, 259–269.

    Article  PubMed  Google Scholar 

  • Kral, A., Popper, A. N., & Fay, R. R. (2013). Deafness. New York: Springer Science+Business Media.

    Book  Google Scholar 

  • Kraus, N., & White-Schwoch, T. (2015). Unraveling the biology of auditory learning: A cognitive-sensorimotor-reward framework. Trends in Cognitive Sciences, 19, 642–654.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan, A., Xu, Y., Gandour, J., & Cariani, P. (2005). Encoding of pitch in the human brainstem is sensitive to language experience. Cognitive Brain Research, 25, 161–168.

    Article  PubMed  Google Scholar 

  • Krizman, J., Marian, V., Shook, A., Skoe, E., & Kraus, N. (2012). Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. Proceedings of the National Academy of Sciences of the USA, 109, 7877–7881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krizman, J., Slater, J., Skoe, E., Marian, V., & Kraus, N. (2015). Neural processing of speech in children is influenced by extent of bilingual experience. Neuroscience Letters, 585, 48–53.

    Article  CAS  PubMed  Google Scholar 

  • Kuhl, P. K. (1994). Learning and representation in speech and language. Current Opinion in Neurobiology, 4, 812–822.

    Article  CAS  PubMed  Google Scholar 

  • Kuhl, P. K. (2004). Early language acquisition: cracking the speech code. Nature Reviews Neuroscience, 5, 831–843.

    Article  CAS  PubMed  Google Scholar 

  • Kuhl, P. K. (2010). Brain mechanisms in early language acquisition. Neuron, 67, 713–727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhl, P., Conboy, B., Coffrey-Corina, S., Padden, D., et al. (2008). Phonetic learning as a pathway to language: New data and native language magnet theory expanded (NLM-e). Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363, 979–1000.

    Article  PubMed  Google Scholar 

  • Kuhl, P. K., Stevens, E., Hayashi, A., Deguchi, T., et al. (2006). Infants show a facilitation effect for native language phonetic perception between 6 and 12 months. Developmental Science, 9, F13–F21.

    Google Scholar 

  • Kuhl, P. K., Williams, K. A., Lacerda, F., Stevens, K. N., & Lindblom, B. (1992). Linguistic experience alters phonetic perception in infants by 6 months of age. Science, 255, 606–608.

    Article  CAS  PubMed  Google Scholar 

  • Locke, J. (1980). The prediction of child speech errors: Implications for a theory of acquisition. In G. H. Heni-komshian, J. F. Kavanagh, & C. A. Ferguson (Eds.), Child phonology. I. Production. New York: Academic Press.

    Google Scholar 

  • Mattock, K., & Burnham, D. (2006). Chinese and English infants’ tone perception: Evidence for perceptual reorganization. Infancy, 10, 241–265.

    Article  Google Scholar 

  • Mattock, K., Molnar, M., Polka, L., & Burnham, D. (2008). The developmental course of lexical tone perception in the first year of life. Cognition, 106, 1367–1381.

    Article  PubMed  Google Scholar 

  • Moushegian, G., Rupert, A. L., & Stillman, R. D. (1973). Laboratory note. Scalp-recorded early responses in man to frequencies in the speech range. Electroencephalography and Clinical Neurophysiology, 35, 665–667.

    Article  CAS  PubMed  Google Scholar 

  • Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118, 2544–2590.

    Article  PubMed  Google Scholar 

  • Olsho, L. W., Koch, E. G., & Halpin, C. F. (1987). Level and age effects in infant frequency discrimination. The Journal of the Acoustical Society of America, 82, 454–464.

    Article  CAS  PubMed  Google Scholar 

  • Panneton, R., & Newman, R. (2012). Development of speech perception. In L. Werner, R. R. Fay, & A. N. Popper (Eds.), Human auditory development (pp. 197–222). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Partanen, E., Kujala, T., Näätänen, R., Liitola, A., et al. (2013). Learning-induced neural plasticity of speech processing before birth. Proceedings of the National Academy of Sciences of the USA, 110, 15145–15150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Querleu, D., Renard, X., Boutteville, C., & Crepin, G. (1989). Hearing by the human fetus? Seminars in Perinatology, 13, 409–420.

    CAS  PubMed  Google Scholar 

  • Romand, R., & Ehret, G. (1990). Development of tonotopy in the inferior colliculus. I. Electrophysiological mapping in house mice. Developmental Brain Research, 54, 221–234.

    Article  CAS  PubMed  Google Scholar 

  • Rubel, E. W., & Ryals, B. M. (1983). Development of the place principle: Acoustic trauma. Science, 4, 512–514.

    Article  Google Scholar 

  • Russo, N., Nicol, T., Musacchia, G., & Kraus, N. (2004). Brainstem responses to speech syllables. Clinical Neurophysiology, 115, 2021–2030.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sacks, O. (1989). Seeing voices: A journal into the world of the deaf. New York: Vintage Books.

    Google Scholar 

  • Sano, M., Kaga, K., Kuan, C.-C., Ino, K., & Mima, K. (2007). Early myelination patterns in the brainstem auditory nuclei and pathway: MRI evaluation study. International Journal of Pediatric Otorhinolaryngology, 71, 1105–1115.

    Article  PubMed  Google Scholar 

  • Shahidullah, S., & Hepper, P. G. (1994). Frequency discrimination by the fetus. Early Human Development, 36, 13–26.

    Article  CAS  PubMed  Google Scholar 

  • Shepard, K. N., Kilgard, M. P., & Liu, R. (2013). Experience-dependent plasticity and auditory cortex. In Y. E. Cohen, A. N. Popper, & R. R. Fay (Eds.), Neural correlates of auditory cognition (pp. 293–327). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Skoe, E., & Kraus, N. (2010). Auditory brainstem response to complex sounds: A tutorial. Ear and Hearing, 31, 302–324.

    Article  PubMed  PubMed Central  Google Scholar 

  • Skoe, E., Krizman, J., Anderson, S., & Kraus, N. (2015). Stability and plasticity of auditory brainstem function across the lifespan. Cerebral Cortex, 25, 1415–1426.

    Article  PubMed  Google Scholar 

  • Skoe, E., Krizman, J., & Kraus, N. (2013). The impoverished brain: Disparities in maternal education affect the neural response to sound. The Journal of Neuroscience, 33, 17221–17231.

    Article  CAS  PubMed  Google Scholar 

  • Song, J. H., Skoe, E., Wong, P. C. M., & Kraus, N. (2008). Plasticity in the adult human auditory brainstem following short-term linguistic training. Journal of Cognitive Neuroscience, 20, 1892–1902.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trainor, L. J., & Unrau, A. (2012). Development of pitch and music perception. In L. Werner, R. R. Fay, & A. N. Popper (Eds.), Human auditory development (pp. 223–254). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Tsao, F. M., Liu, H. M., & Kuhl, P. K. (2006). Perception of native and non-native affricate-fricative contrasts: Cross-language tests on adults and infants. The Journal of the Acoustical Society of America, 120, 2285–2294.

    Article  PubMed  Google Scholar 

  • White-Schwoch, T., Davies, E. C., Thompson, E. C., Woodruff Carr, K., et al. (2015a). Auditory-neurophysiological responses to speech during early childhood: Effects of background noise. Hearing Research, 328, 34–47.

    Article  PubMed  PubMed Central  Google Scholar 

  • White-Schwoch, T., & Kraus, N. (2013). Physiologic discrimination of stop consonants relates to phonological skills in pre-readers: A biomarker for subsequent reading ability? Frontiers in Human Neuroscience, 7, 1–9.

    Article  Google Scholar 

  • White-Schwoch, T., Woodruff Carr, K., Thompson, E. C., Anderson, S., et al. (2015b). Auditory processing in noise: A preschool biomarker for literacy. PLoS Biology, 13(7), e1002196. Doi:10.1371/journal.pbio.1002196

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong, P. C. M., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10, 420–422.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Worden, F. G., & Marsh, J. T. (1968). Frequency-following (microphonic-like) neural responses evoked by sound. Electroencephalography and Clinical Neurophysiology, 25, 42–52.

    Article  CAS  PubMed  Google Scholar 

  • Yip, M. (2002). Tone. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Zhang, Y., Kuhl, P. K., Imada, T., Kotani, M., & Tohkura, Y. (2005). Effects of language experience: Neural commitment to language-specific auditory patterns. NeuroImage, 26, 703–720.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuh-Cherng Jeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jeng, FC. (2017). Infant and Childhood Development: Intersections Between Development and Language Experience. In: Kraus, N., Anderson, S., White-Schwoch, T., Fay, R., Popper, A. (eds) The Frequency-Following Response. Springer Handbook of Auditory Research, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-47944-6_2

Download citation

Publish with us

Policies and ethics