Skip to main content

Epidemiology and Management of Fungal Diseases in Dry Environments

  • Chapter
  • First Online:
Innovations in Dryland Agriculture
  • 1412 Accesses

Abstract

Fungal pathogens are among the most damaging biotic factors for plants. More than 10,000 fungal species attack plant roots, stems, leaves, flowers, seeds or fruits, and cause diseases that vary in their severity and economic impact. In contrast, many fungal species act as biocontrol agents, producers of antibiotics, promoters of plant growth and development, and decomposers of waste material. Fungi occur in temperate, tropical and dry environments. When the conditions are not suitable for fungi, they tend to survive in soil or plant debris as solid structures. Spores of fungal pathogens usually germinate in response to exudates secreted by plants, resulting in hyphal growth towards plants and subsequent infection and disease development. Development of disease epidemics depends on several factors, including aggressiveness of the pathogen, reproduction rate, mode of reproduction, susceptibility of the hosts, and the prevailing environmental conditions. Successful management of fungal diseases depends on how much we understand about the epidemiology of fungal pathogens under certain environmental conditions and cultural practices. This chapter focuses on the epidemiology of fungal pathogens and plant–pathogen interactions in dry environments, and discusses some of the most common fungal diseases in these environments, with a particular focus on wheat root rot, spot blotch and rust diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed RMM, Al-Sadi AM, Al-Shihi MA, Al-Hinai S, Robinson MD (2013) Diversity of free-living and lichenized fungal communities in biological desert crusts of the Sultanate of Oman and their role in improving soil properties. Soil Biol Biochem 57:695–705

    Article  CAS  Google Scholar 

  • Acharya K, Dutta AK, Pradhan P (2013) Bipolaris sorokiniana (Sacc.) Shoem.: The most destructive wheat fungal pathogen in the warmer areas. Aust J Crop Sci 5:1064–1071

    Google Scholar 

  • Agostinetto L, Casa RT, Bogo A, Sachs C, Souza CA, Reis EM, Cristina da Cunha I (2015) Barley spot blotch intensity, damage, and control response to foliar fungicide application in southern Brazil. Crop Prot 67:7–12

    Article  CAS  Google Scholar 

  • Agrios GN (2005) Plant pathology. Academic, San Diego

    Google Scholar 

  • Ahmad A, Thomas GJ, Barker SJ, Macleod WJ (2016) Genotype resistance, inoculum source and environment directly influence development of grey leaf spot (caused by Stemphylium spp.) and yield loss in narrow-leafed lupin (Lupinus angustifolius). Crop Pasture Sci 67:81–90

    Article  CAS  Google Scholar 

  • Al-Mawali QS, Al-Sadi AM, Al-Said FA, Deadman ML (2013) Etiology, development and reaction of muskmelon to vine decline disease under arid conditions of Oman. Phytopathol Mediterr 52:457–465

    Google Scholar 

  • Al-Sadi AM (2002) Variability in natural host-pathogen interactions; characterization of Cochliobolus sativus (anamorph Bipolaris sorokiniana)-Wheat-Barley Pathosystem in Oman. In: SQU, Muscat.

    Google Scholar 

  • Al-Sadi AM (2013) Phylogenetic and population genetic analysis of Ceratocystis radicicola infecting date palms. J Plant Pathol 95:47–55

    Google Scholar 

  • Al-Sadi AM (2016) Variation in resistance to spot blotch and the aggressiveness of Bipolaris sorokiniana on barley and wheat cultivars. J Plant Pathol 98:97–103

    Google Scholar 

  • Al-Sadi AM, Deadman ML (2010) Influence of seedborne Cochliobolus sativus (anamorph: Bipolaris sorokiniana) on crown rot and root rot of barley and wheat. J Phytopathol 158:683–690

    Article  Google Scholar 

  • Al-Sa’di AM, Drenth A, Deadman ML, Al-Said FA, Khan I, Aitken EAB (2008a) Association of a second phase of mortality in cucumber seedlings with a rapid rate of metalaxyl biodegradation in greenhouse soils. Crop Prot 27:1110–1117

    Article  Google Scholar 

  • Al-Sa’di AM, Drenth A, Deadman ML, Al-Said FA, Khan I, Aitken EAB (2008b) Potential sources of Pythium inoculum into greenhouse soils with no previous history of cultivation. J Phytopathol 156:502–505

    Article  Google Scholar 

  • Al-Sadi AM, Al-Masoudi RS, Al-Habsi N, Al-Said FA, Al-Rawahy SA, Ahmed M, Deadman ML (2010a) Effect of salinity on Pythium damping-off of cucumber and on the tolerance of Pythium aphanidermatum. Plant Pathol 59:112–120

    Article  CAS  Google Scholar 

  • Al-Sadi AM, Al-Said FA, Deadman ML, Drenth A, Aitken EAB (2010b) Can silicon improve defense responses of cucumber seedlings to Pythium-induced damping-off disease? Acta Hortic 871:441–444

    Article  CAS  Google Scholar 

  • Al-Sadi AM, Al-Said FA, Al-Jabri AH, Al-Mahmooli IH, Al-Hinai AH, de Cock AWAM (2011a) Occurrence and characterization of fungi and oomycetes transmitted via potting mixtures and organic manures. Crop Prot 30:38–44

    Article  Google Scholar 

  • Al-Sadi AM, Al-Said FA, Al-Kiyumi KS, Al-Mahrouqi RS, Al-Mahmooli IH, Deadman ML (2011b) Etiology and characterization of cucumber vine decline in Oman. Crop Prot 30:192–197

    Article  Google Scholar 

  • Al-Sadi AM, Al-Ghaithi AG, Al-Balushi ZM, Al-Jabri AH (2012) Analysis of diversity in Pythium aphanidermatum populations from a single greenhouse reveals phenotypic and genotypic changes over 2006 to 2011. Plant Dis 96:852–858

    Article  Google Scholar 

  • Al-Sadi AM, AL-Wehaibi AN, Al-Shariqi RM, Al-Hammadi MS, Al-Hosni IA, Al-Mahmooli IH, Al-Ghaithi AG (2013) Population genetic analysis reveals diversity in Lasiodiplodia species infecting date palm, Citrus, and mango in Oman and the UAE. Plant Dis 97:1363–1369

    Article  CAS  Google Scholar 

  • Al-Sadi, A.M., Z.A. Al-Alawi and A. Patzelt, (2015a) Association of Alternaria alternata and Cladosporium cladosporioides with leaf spot in Cissus quadrangularis and Ficus sycomorus. Plant Pathol J (in press)

    Google Scholar 

  • Al-Sadi AM, Al-Masoodi RS, Al-Ismaili M, Al-Mahmooli IH (2015b) Population structure and development of resistance to hymexazol among Fusarium solani populations from date palm, Citrus and cucumber. J Phytopathol 163:947–955

    Article  CAS  Google Scholar 

  • Al-Sadi AM, Al-Mazroui SS, Phillips A (2015c) Evaluation of culture-based techniques and 454 pyrosequencing for the analysis of fungal diversity in potting media and organic fertilizers. J Appl Microbiol 119:500–509

    Article  CAS  PubMed  Google Scholar 

  • Al-Sadi AM, Al-Oweisi F, Edwards S, Al-Nadabi H, Al-Fahdi A (2015d) Genetic analysis reveals diversity and genetic relationship among Trichoderma isolates from potting media, cultivated soil and uncultivated soil. BMC Microbiol 15:147

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Samarria FH, El-Bahadli AH, Al-Rawi FA (1988) Comparison between effects of soil disinfestation methods on some pathogens of cucumber. Arab J Plant Protect 6:106–112

    Google Scholar 

  • Bach EE, Kimati H (1999) Purification and characterization of toxins from wheat isolates of Drechslera tritici-repentis, Bipolaris bicolor, and Bipolaris sorokiniana. J Venomous Anim Toxins 5:184–199

    Google Scholar 

  • Bailey KL, Duczek LJ, Potts DA (1997) Inoculation of seeds with Bipolaris sorokiniana and soil fumigation methods to determine wheat and barley tolerance and yield losses caused by common root rot. Can J Plant Sci 77:691–698

    Article  Google Scholar 

  • Bashyal BM, Chand R, Prasad LC, Joshi AK (2012) Influence of growth stage on sensitivity to helminthosporol toxin of Bipolaris sorokiniana of barley (Hordeum vulgare). Indian J Agricult Sci 82:724–726

    Google Scholar 

  • Bates ML, Stanghellini ME (1984) Root rot of hydroponically grown spinach caused by Pythium aphanidermatum and P. dissotocum. Plant Dis 68:989–991

    Article  Google Scholar 

  • Benhamou N, Garand C, Goulet A (2002) Ability of nonpathogenic Fusarium oxysporum strain Fo47 to induce resistance against Pythium ultimum infection in cucumber. Appl Environ Microbiol 68:4044–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernard E, Larkin RP, Tavantzis S, Erich MS, Alyokhin A, Gross SD (2014) Rapeseed rotation, compost and biocontrol amendments reduce soilborne diseases and increase tuber yield in organic and conventional potato production systems. Plant Soil 374:611–627

    Article  CAS  Google Scholar 

  • Bhatti DS, Dalal MR, Malhan I (1981) Estimation of loss in wheat yield due to the cerealcyst nematode heterodera avenae. Trop Pest Manage 27:375–378

    Article  CAS  Google Scholar 

  • Blaya, J., R. López-Mondéjar, E. Lloret, J.A. Pascual, M. Ros, (2013) Changes induced by Trichoderma harzianum in suppressive compost controlling Fusarium wilt Pest Biochem Physiol 107:112–119

    Google Scholar 

  • Bollen GJ, Volker D, Wijnen AP (1989) Inactivation of soil-borne plant pathogens during small-scale composting of crop residues. Neth J Plant Pathol 95:19–30

    Article  Google Scholar 

  • Campion C, Massiot P, Rouxel F (1997) Aggressiveness and production of cell-wall degrading enzymes by Pythium violae, Pythium sulcatum and Pythium ultimum, responsible for cavity spot on carrots. Eur J Plant Pathol 103:725–735

    Article  CAS  Google Scholar 

  • Carrieri R, Raimo F, Pentangelo A, Lahoz E (2013) Fusarium proliferatum and Fusarium tricinctum as causal agents of pink rot of onion bulbs and the effect of soil solarization combined with compost amendment in controlling their infections in field. Crop Prot 43:31–37

    Article  Google Scholar 

  • Cartwright DK, Spurr HW Jr, Shew HD (1995) Commercial potting medium as the source of Pythium causing a disease on tobacco transplants. Plant Dis 79:538

    Article  Google Scholar 

  • Caten CE, Jinks JL (1968) Spontaneous variability of single isolates of Phytophthora infestans. I. Cultural variation. Can J Bot 46:329–348

    Article  Google Scholar 

  • Chen WQ, Wu LR, Liu TG, Xu SC, Jin SL, Peng YL, Wang BT (2009) Race dynamics, diversity and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Dis 93:1093–1101

    Article  Google Scholar 

  • Chérif M, Asselin A, Bélanger RR (1994) Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 84:236–242

    Article  Google Scholar 

  • Chowdhury AK, Singh G, Tyagi BS, Ojha A, Dhar T, Bhattacharya PM (2013) Spot blotch disease of wheat – a new thrust area for sustaining productivity. J Wheat Res 5:1–11

    Google Scholar 

  • Chung WH, Chung WC, Ting PF, Ru CC, Huang HC, Huang JW (2009) Nature of resistance to methyl benzimidazole carbamate fungicides in Fusarium oxysporum f.sp. lilii and F. oxysporum f.sp. gladioli in Taiwan. J Phytopathol 157:742–747

    Article  CAS  Google Scholar 

  • Clarke MP, Gooding MJ, Jones SA (2004) The effects of irrigation, nitrogen fertilizer and grain size on Hagberg falling number, specific weight and black point of winter wheat. J Sci Food Agric 84:227–236

    Article  CAS  Google Scholar 

  • Davidse, L.C., J. Henken, A. Dalen, A.B. van Jespers, B.C. Mantel (1989) Nine years of practical experience with phenylamide resistance in Phytophthora infestans in the Netherlands. Netherlands J Plant Pathol 95(Suppl 1):197–213

    Google Scholar 

  • Davison EM, Drenth A, Kumar S, Mack S, Mackie AE, McKirdy S (2006) Pathogens associated with nursery plants imported into Western Australia. Australas Plant Pathol 35:473–475

    Article  Google Scholar 

  • de Miranda BEC, Boiteux LS, Reis A (2010) Identification of Solanum (section Lycopersicon) accessions with resistance to Stemphylium solani and S. lycopersici. Hortic Bras 28:178–184

    Article  Google Scholar 

  • Deadman M, Al-Hasani H, Al-Sa’di AM (2006) Solarization and biofumigation reduce Pythium aphanidermatum induced damping-off and enhance vegetative growth of greenhouse cucumber in Oman. J Plant Pathol 88:333–335

    Google Scholar 

  • Deadman ML, Al-Sadi AM, Al-Maqbali YM, Farr DF, Aime MC (2011) Additions to the rust fungi (Pucciniales) from northern Oman. Sydowia 63:155–168

    Google Scholar 

  • DeVay JE, Garber RH, Matheron D (1982) Role of Pythium species in the seedling disease complex of cotton in California. Plant Dis 66:151–154

    Article  Google Scholar 

  • Donaldson SP, Deacon JW (1993) Effects of amino acids and sugars on zoospore taxis, encystment and cyst germination in Pythium aphanidermatum (Edson) Fitzp., P. catenulatum Matthews and P. dissotocum Drechs. New Phytol 123:289–295

    Article  CAS  Google Scholar 

  • Drenth A, Goodwin SB (1999) Population Structure of Oomycetes. In: Worral J (ed) Structure and dynamics of fungal populations. Kluwer Academic Publishers, Boston, pp. 195–224

    Chapter  Google Scholar 

  • Duczek LJ (1990) Sporulation of Cochliobolus sativus on crown and underground parts of spring cereals in relation to weather and host species, cultivar and phenology. Can J Plant Pathol 12:273–278

    Article  Google Scholar 

  • Eckert JW (1988) Historical development of fungicide resistance in plant pathogens. In: Delp CJ (ed) Fungicide resistance in North America. APS, St. Paul, pp. 1–3

    Google Scholar 

  • Elad Y, Zimand G, Zaqs Y, Zuriel S, Chet I (1993) Use of Trichoderma harzianum in combination or alternation with fungicides to control cucumber grey mold (Botrytis cinerea) under commercial greenhouse conditions. Plant Pathol 42:324–332

    Article  CAS  Google Scholar 

  • Farraq ESH, Fotouh YO (2010) Solarization as a method for producing fungal-free container soil and controlling wilt and root-rot diseases on cucumber plants under greenhouse conditions. Achieves Phytopathol Plant Protect 43:519–526

    Article  Google Scholar 

  • Fetch T, Mitchell Fetch J, Xue A (2015) Races of Puccinia graminis on barley, oat, and wheat in Canada in 2007 and 2008. Can J Plant Pathol 37:331–341

    Article  Google Scholar 

  • Gardiner RB, Jarvis WR, Shipp JL (1990) Ingestion of Pythium spp. by larvae of the fungus gnat Bradysia impatiens (Diptera: Sciaridae). Ann Appl Biol 116:205–212

    Article  Google Scholar 

  • Gardner DE, Hendrix FF Jr (1973) Carbon dioxide and oxygen concentrations in relation to survival and saprophytic growth of Pythium irregulare and Pythium vexans in soil. Can J Bot 51:1593–1598

    Article  Google Scholar 

  • Garzon CD, Geiser DM, Moorman GW (2005a) Amplified fragment length polymorphism analysis and internal transcribed spacer and CoxII sequences reveal a species boundary within Pythium irregulare. Phytopathology 95:1489–1498

    Article  CAS  PubMed  Google Scholar 

  • Garzon CD, Geiser DM, Moorman GW (2005b) Diagnosis and population analysis of Pythium species using AFLP fingerprinting. Plant Dis 89:81–89

    Article  Google Scholar 

  • Gautam HR, Bhardwaj ML, Kumar R (2013) Climate change and its impact on plant diseases. Curr Sci 105:1685–1691

    Google Scholar 

  • Gilardi G, Baudino M, Moizio M, Pugliese M, Garibaldi A, Gullino ML (2013) Integrated management of Phytophthora capsici on bell pepper by combining grafting and compost treatment. Crop Prot 53:13–19

    Article  Google Scholar 

  • Grondona I, Hermosa R, Tejada M, Gomis MD, Mateos PF, Bridge PD, Monte E, Garcia-Acha I (1997) Physiological and biochemical characterization ofTrichoderma harzianum, a biological control agent against soil borne fungal plant pathogens. Appl Environ Microbiol 63:3189–3198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Petermann JS, Schittko C, Wurst S (2015) Independent role of belowground organisms and plant cultivar diversity in legume-grass communities. Appl Soil Ecol 95:1–8

    Article  CAS  Google Scholar 

  • Guzmán-Valle P, Bravo-Luna L, Montes-Belmont R, Guigón-López C, Sepúlveda-Jiménez G (2014) Induction of resistance to Sclerotium rolfsii in different varieties of onion by inoculation with Trichoderma asperellum. Eur J Plant Pathol 138:223–229

    Article  Google Scholar 

  • Hancock JG (1981) Longevity of Pythium ultimum in moist soils. Phytopathology 71:1033–1037

    Article  Google Scholar 

  • Harman GE, Taylor AG, Stasz TE (1989) Combining effective strains of Trichoderma harzianum and solid matrix priming to improve biological seed treatments. Plant Dis 73:631–637

    Article  Google Scholar 

  • Harvey PR, Butterworth PJ, Hawke BG, Pankhurst CE (2000) Genetic variation among populations of Pythium irregulare in southern Australia. Plant Pathol 49:619–627

    Article  Google Scholar 

  • Harvey PR, Butterworth PJ, Hawke BG, Pankhurst CE (2001) Genetic and pathogenic variation among cereal, medic and sub-clover isolates of Pythium irregulare. Mycol Res 105:85–93

    Article  Google Scholar 

  • Heckman JR, Johnston S, Cowgill W (2003) Pumpkin yield and disease response to amending soil with silicon. Hortscience 38:552–554

    CAS  Google Scholar 

  • Hendrix FF, Campbell WA (1973) Pythium as plant pathogens. Annu Rev Phytopathol 11:77–98

    Article  Google Scholar 

  • Hernandez JR, Aime MC, Henkel TW (2005) The rust fungi (Uredinales) of Guyana. Sydowia 57:189–222

    Google Scholar 

  • Hoitink H, Boehm M (1999) Biocontrol within the contex of soil microbial communities: A substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446

    Article  CAS  PubMed  Google Scholar 

  • Iftikhar S, Asad S, Kazi AM, Ahmad I (2009) In vitro screening of synthetic hexaploid wheat lines against Bipolaris sorokiniana in Pakistan. Pak J Bot 41:1989–2001

    Google Scholar 

  • Jahani M, Aggarwal R, Gupta S, Sharma S, Dureja P (2014) Purification and characterization of a novel toxin from Bipolaris sorokiniana, causing spot blotch of wheat and analysis of variability in the pathogen. Cereal Res Commun 42:252–261

    Article  CAS  Google Scholar 

  • Kaiser WJ, Hannan RM (1983) Etiology and control of seed decay and pre-emergence damping-off of chickpea by Pythium ultimum. Plant Dis 67:77–81

    Article  Google Scholar 

  • Kaufman DD, Edwards DF (1983) Pesticide-microbe interaction effects on persistence of pesticides in soil. In: Proceedings of the 5th international congress of pesticide chemistry, Tokyo, Japan, 29 August to 4 September, 1982. 1983, pp 177–182

    Google Scholar 

  • Kazeeroni EA, Al-Sadi AM (2016) 454-Pyrosequencing reveals variable fungal diversity across farming systems. Front Plant Sci 7:314

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubo Y, Harata K, Kodama S, Fukada F (2016) Development of the infection strategy of the hemibiotrophic plant pathogen, Colletotrichum orbiculare, and plant immunity. Physiol Mol Plant Pathol 95(7):32–36

    Article  CAS  Google Scholar 

  • Kumar J, Schafer P, Huckelhoven R, Langen G, Baltruschat H, Stein E, Nagarajan S, Heinzkogel K (2002) Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Mol Plant Pathol 3:185–195

    Article  CAS  PubMed  Google Scholar 

  • Lamour KH, Hausbeck MK (2003) Effect of crop rotation on the survival of Phytophthora capsici in Michigan. Plant Dis 87:841–845

    Article  Google Scholar 

  • Lievens B, Vaes K, Coosemans J, Ryckeboer J (2001) Systemic resistance induced in cucumber against Pythium root rot by source separated household waste and yard trimmings composts. Compost Sci Util 9:221–229

    Article  Google Scholar 

  • Liljeroth E, Franzon AI, Gustafsson M (1994) Effect of prehelminthosporol, a phytotoxin produced by Bipolaris sorokiniana, on barley roots. Can J Bot 75:558–563

    Article  Google Scholar 

  • Liljeroth E, Franzon AI, Gunnarsson T (1996) Root colonization by Bipolaris sorokiniana in different cereals and relations to lesion development and natural root cortical cell death. J Phytopathol 144:301–307

    Article  Google Scholar 

  • Lodha, S., R. Mawar and A. Saxena (2014) Compost application for suppression of Macrophomina Phaseolina causing charcoal rot in arid crops. In: Acta Horticulturae, pp 307–312

    Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95

    Article  Google Scholar 

  • MacDonald E, Millward L, Ravishankar JP, Money NP (2002) Biomechanical interaction between hyphae of two Pythium species (Oomycota) and host tissues. Fungal Genet Biol 37:245–249

    Article  PubMed  Google Scholar 

  • Martin FN (1995) Pythium. In: Kohmoto K, Singh US, Singh RP (eds) Pathogenesis and host specificity in plant diseases; histopathological, biochemical, genetic and molecular bases. Elsevier, Oxford, pp. 17–36

    Google Scholar 

  • Martin FN, Hancock JG (1986) Association of chemical and biological factors in soils suppressive to Pythium ultimum. Phytopathology 76:1221–1231

    Article  CAS  Google Scholar 

  • Martin FN, Loper JE (1999) Soilborne plant diseases caused by Pythium spp.: ecology, epidemiology, and prospects for biological control. Crit Rev Plant Sci 18:111–181

    Article  CAS  Google Scholar 

  • Matsushita Y, Bao Z, Kurose D, Okada H, Takemoto S, Sawada A, Nagase H, Takano M, Murakami H, Koitabashi M, Yoshida S, Saito M, Sano T, Tsushima S (2015) Community structure, diversity, and species dominance of bacteria, fungi, and nematodes from naturally and conventionally farmed soil: a case study on Japanese apple orchards. Org Agric 5:11–28

    Article  Google Scholar 

  • McDonald BA, McDermott JM (1993) Population genetics of plant pathogenic fungi. Bioscience 43:311–319

    Article  Google Scholar 

  • Menzies J, Bowen P, Ehret D, Glass AD (1992) Foliar applications of potassium silicate reduce severity of powdery mildew on cucumber, muskmelon, and zucchini squash. J Am Soc Hortic Sci 117:902–905

    CAS  Google Scholar 

  • Nallathambi P, Umamaheswari C, Thakore BBL, More TA (2009) Post-harvest management of ber (Ziziphus mauritiana Lamk) fruit rot (Alternaria alternata Fr. Keissler) using Trichoderma species, fungicides and their combinations. Crop Prot 28:525–532

    Article  CAS  Google Scholar 

  • Neher DA, Weicht TR, Dunseith P (2015) Compost for management of weed seeds, pathogen, and early blight on brassicas in organic farmer fields. Agroecol Sustain Food Syst 39:3–18

    Article  Google Scholar 

  • Neupane A, Sharma R, Duveiller E, Shrestha S (2010) Sources of Cochliobolus sativus inoculum causing spot blotch under warm wheat growing conditions in South Asia. Cereal Res Commun 38:541–549

    Article  Google Scholar 

  • Nicol JM, Turner SJ, Coyne DL, Nijs Ld, Hockland S, Maafi ZT (2011) Current nematode threats to world agriculture. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Heidelberg, pp. 21–43

    Chapter  Google Scholar 

  • Noble R, Roberts SR (2004) Eradication of plant pathogens and nematodes during composting: a review. Plant Pathol 53:548–568

    Article  Google Scholar 

  • Ovsyankina AV (2005) Species diversity of the rye root rot causative agents in the regions of Russia. Mikol Fitopatol 39:88–91

    Google Scholar 

  • Pardey PG, Beddow JM, Kriticos DJ, Hurley TM, Park RF, Duveiller E, Sutherst RW, Burdon JJ, Hodson D (2013) Right-sizing stem-rust research. Science 340:147–148

    Article  CAS  PubMed  Google Scholar 

  • Paulitz TC, Adams K (2003) Composition and distribution of Pythium communities in wheat fields in eastern Washington state. Phytopathology 93:867–873

    Article  CAS  PubMed  Google Scholar 

  • Peethambaran CK, Singh RS (1977) Survival of different structures of Pythium spp. in soil. Indian Phytopathol 30:347–352

    Google Scholar 

  • Perkins DD (1991) In praise of diversity. In: Bennett JW, Lasure LL (eds) More gene manipulations in fungi. Academic, San Diego, pp. 3–26

    Chapter  Google Scholar 

  • Pilet F, Pelle R, Ellisseche D, Andrivon D (2005) Efficacy of the R2 resistance gene as a component for the durable management of potato late blight in France. Plant Pathol 54:723–732

    CAS  Google Scholar 

  • Poole GJ, Harries M, Hüberli D, Miyan S, MacLeod WJ, Lawes R, McKay A (2015) Predicting cereal root disease in Western Australia using soil DNA and environmental parameters. Phytopathology 105:1069–1079

    Article  CAS  PubMed  Google Scholar 

  • Pose-Juan E, Sánchez-Martín MJ, Herrero-Hernández E, Rodríguez-Cruz MS (2015) Application of mesotrione at different doses in an amended soil: Dissipation and effect on the soil microbial biomass and activity. Sci Total Environ 536:31–38

    Article  CAS  PubMed  Google Scholar 

  • Pottorff LP, Panter KL (1997) Survey of Pythium and Phytophthora spp. in irrigation water used by Colorado commercial greenhouses. HortTechnology 7:153–155

    Google Scholar 

  • Punja ZK, Yip R (2003) Biological control of damping-off and root rot caused by Pythium aphanidermatum on greenhouse cucumbers. Can J Plant Pathol 25:411–417

    Article  Google Scholar 

  • Ravishankar JP, Davis CM, Davis DJ, MacDonald E, Makselan SD, Millward L, Money NP (2001) Mechanics of solid tissue invasion by the mammalian pathogen Pythium insidiosum. Fungal Genet Biol 34:167–175

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Ghosh R, Pande S (2015) Dry root rot (Rhizoctonia bataticola (Taub.) Butler): an emerging disease of chickpea – where do we stand? Arch Phytopathol Plant Protect 48:797–812

    Article  CAS  Google Scholar 

  • Singh S, Singh H, Sharma A, Meeta M, Singh B, Joshi N, Grover P, Al-Yassin A, Kumar S (2015) Inheritance of spot blotch resistance in barley (Hordeum vulgare L.). Can J Plant Sci 94:1203–1209

    Article  Google Scholar 

  • Smiley RW, Gourlie JA, Easley SA, Patterson LM (2005) Pathogenicity of fungi associated with the wheat crown rot complex in Oregon and Washington. Plant Dis 89:949–957

    Article  Google Scholar 

  • Smith ML, Bruhn JN, Anderson JB (1992) The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356:428–431

    Article  Google Scholar 

  • Stanghellini ME, Burr TJ (1973) Germination in vivo of Pythium aphanidermatum oospores and sporangia. Phytopathology 63:1493–1496

    Article  Google Scholar 

  • Stanghellini ME, Hancock JG (1971a) Radial extent of the bean spermosphere and its relation to the behaviour of Pythium ultimum. Phytopathology 61:165–168

    Article  Google Scholar 

  • Stanghellini ME, Hancock JG (1971b) Sporangium of Pythium ultimum as a survival structure in soil. Phytopathology 61:157–164

    Article  Google Scholar 

  • Stanghellini ME, Nigh EL Jr (1972) Occurrence and survival of Pythium aphanidermatum under arid soil conditions in Arizona. Plant Dis Rep 56:507–510

    Google Scholar 

  • Stanghellini ME, Phillips JM (1975) Pythium aphanidermatum: its occurrence and control with pyroxychlor in the Arabian desert at Abu Dhabi. Plant Dis Rep 59:559–563

    CAS  Google Scholar 

  • Stasz TE, Harman GE (1980) Interactions of Pythium ultimum with germinating resistant or susceptible pea seeds. Phytopathology 70:27–31

    Article  Google Scholar 

  • Stott MB, Taylor MW (2016) Microbial ecology research in New Zealand. N Z J Ecol 40

    Google Scholar 

  • Szabo LJ, Cuomo CA, Park RF(2014) Puccinia graminis. In: Genomics of plant-associated fungi: monocot pathogens, pp 177–196

    Google Scholar 

  • Toklu F, Akgul DS, Bicici M, Karakoy T (2008) The relationship between black point and fungi species and effects of black point on seed germination properties in bread wheat. Turk J Agric For 32:267–272

    Google Scholar 

  • Tunali B, Nicol JM, Hodson D, Uckun Z, Buyuk O, Erdurmus D, Hekimhan H, Aktas H, Akbudak M, Bagci A (2008) Root and crown rot fungi associated with spring, facultative and winter wheat in Turkey. Plant Dis 92:1299–1306

    Article  Google Scholar 

  • Van der Plaats-Niterink AJV (1981) Monograph of the genus Pythium. Stud Mycol 21:1–242

    Google Scholar 

  • Van Geel M, Ceustermans A, Van Hemelrijck W, Lievens B, Honnay O (2015) Decrease in diversity and changes in community composition of arbuscular mycorrhizal fungi in roots of apple trees with increasing orchard management intensity across a regional scale. Mol Ecol 24:941–952

    Article  CAS  PubMed  Google Scholar 

  • van Wyk M, Al-Adawi AO, Khan IA, Deadman ML, Al-Jahwari AA, Wingfield BD, Ploetz RC, Wingfield MJ (2007) Ceratocystis manginecans sp. nov., causal agent of a destructive mango wilt disease in Oman and Pakistan. Fungal Divers 27:213–230

    Google Scholar 

  • Vujanovic V, Mavragani D, Hamel C (2012) Fungal communities associated with durum wheat production system: A characterization by growth stage, plant organ and preceding crop. Crop Prot 37:26–34

    Article  Google Scholar 

  • Wanyera R, MacHaria JK, Kilonzo SM, Kamundia W (2009) Foliar fungicides to control wheat stem rust, race TTKS (Ug99), in Kenya. Plant Dis 93:929–932

    Article  CAS  Google Scholar 

  • Watson IA, de Sousa CNA (1983) Long distance transport of spores of Puccinia graminis tritici in the southern hemisphere. In: Proceedings of the Linnean Society of New South Wales, vol 106, pp 311–321

    Google Scholar 

  • Wiersma JJ, Motteberg CD (2005) Evaluation of five fungicide application timings for control of leaf-spot diseases and fusarium head blight in hard red spring wheat. Can J Plant Pathol 27:25–37

    Article  CAS  Google Scholar 

  • Wiese MV (1987) Compendium of wheat diseases. APS Press, St. Paul

    Google Scholar 

  • Xiao JZ, Tsuge T, Doke N (1992) Further evaluation of the significance of BZR-toxin produced by Bipolaris zeicola race 3 in pathogenesis on rice and maize plants. Physiol Mol Plant Pathol 40:359–370

    Article  CAS  Google Scholar 

  • Zabka V, Stangl M, Bringmann G, Vogg G, Riederer M, Hildebrandt U (2008) Host surface properties affect prepenetration processes in the barley powdery mildew fungus. New Phytol 177:251–263

    PubMed  Google Scholar 

  • Zhang YH, Peng C, Liu TR, Liu YK, Zhang ZB, Liu XY, Li Y (1999) Loss of spring wheat caused by wheat root rot in Heilongjiang Province. Acta Phytopathol Sin 29:329–332

    Google Scholar 

  • Zhu Z, Bonnett D, Ellis M, Singh P, Heslot N, Dreisigacker S, Gao C, Mujeeb-Kazi A (2015) Mapping resistance to spot blotch in a CIMMYT synthetic-derived bread wheat. Mol Breed 34:1215–1228

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah M. Al-Sadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Al-Sadi, A.M. (2016). Epidemiology and Management of Fungal Diseases in Dry Environments. In: Farooq, M., Siddique, K. (eds) Innovations in Dryland Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-47928-6_7

Download citation

Publish with us

Policies and ethics