Skip to main content

Crocodylia Communication

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Animal Cognition and Behavior
  • 72 Accesses

Synonyms

Crocodylian Communication; Crocodilia Communication; Crocodilian Communication

Introduction

The members of the evolutionarily ancient order Crocodylia, commonly referred to as “crocodilians” possess a wide array of communication capacities in the acoustic, visual, tactile, and olfactory domain. The behavior of crocodilians has been studied in the wild and captivity for centuries, and many visual and acoustic signals have been described in detail. Yet, the actual communicative function of these behaviors is still a topic of active research. This has several reasons. For one, crocodilians cannot easily be individually identified and followed in the wild due to their semiaquatic lifestyle. Secondly, social interactions are usually composed of multiple signaling elements, which occur in more than one context, for example, in courtship and in territorial displays. Finally, most signals are very subtle and some of them even unperceivable to humans, such as subaudible vibrations.

The...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Britton, A. R. C. (2001). Review and classification of call types of juvenile crocodilians and factors affecting distress calls. In Crocodilian biology and evolution (pp. 364–377). Chipping Norton: Surrey Beatty & Sons.

    Google Scholar 

  • Campbell, H. W. (1973). Observations on the acoustic behavior of crocodilians. Zoologica, 58, 1–11.

    Google Scholar 

  • Chabert, T., Colin, A., Aubin, T., Shacks, V., Bourquin, S. L., Elsey, R. M., et al. (2015). Size does matter: Crocodile mothers react more to the voice of smaller offspring. Scientific Reports, 5, 15547. https://doi.org/10.1038/srep15547.

    Article  PubMed  PubMed Central  Google Scholar 

  • Charlton, B. D., & Reby, D. (2016). The evolution of acoustic size exaggeration in terrestrial mammals. Nature Communications, 7, 12739.

    Article  Google Scholar 

  • Dinets, V. (2011). Effects of aquatic habitat continuity on signal composition in crocodilians. Animal Behaviour, 82(2), 191–201. https://doi.org/10.1016/j.anbehav.2011.04.012.

    Article  Google Scholar 

  • Garrick, L. D., & Lang, J. W. (1977). Social signals and behaviors of adult alligators and crocodiles. American Zoologist, 17(1), 225–239.

    Article  Google Scholar 

  • Garrick, L. D., Lang, J. W., & Herzog, H. A. (1978). Social signals of adult American alligators. Bulletin of the American Museum of Natural History, 160(3), 153–192.

    Google Scholar 

  • Grigg, G. C., & Kirshner, D. (2015). Biology and evolution of crocodylians. Collingwood: CSIRO Publishing. https://doi.org/10.1071/9781486300679.

    Book  Google Scholar 

  • Herzog, H. A., & Burghardt, G. M. (1977). Vocalization in juvenile crocodilians. Zeitschrift für Tierpsychologie, 44(3), 294–304.

    PubMed  Google Scholar 

  • Higgs, D. M., Brittan-Powell, E. F., Soares, D., Souza, M. J., Carr, C. E., Dooling, R. J., & Popper, A. N. (2002). Amphibious auditory responses of the American alligator (Alligator mississipiensis). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 188(3), 217–223. https://doi.org/10.1007/s00359-002-0296-8.

    Article  PubMed  Google Scholar 

  • Hunt, R. H., & Watanabe, M. E. (1982). Observations on maternal behavior of the American alligator, Alligator mississippiensis. Journal of Herpetology, 16(3), 235–239.

    Article  Google Scholar 

  • Kofron, C. P. (1991). Courtship and mating of the Nile crocodile (Crocodylus niloticus). Amphibia-Reptilia, 12(1), 39–48. https://doi.org/10.1163/156853891X00310.

    Article  Google Scholar 

  • Leitch, D. B., & Catania, K. C. (2012). Structure, innervation and response properties of integumentary sensory organs in crocodilians. Journal of Experimental Biology, 215(23), 4217–4230. https://doi.org/10.1242/jeb.076836.

    Article  Google Scholar 

  • Passek, K. M., & Gillingham, J. C. (1999). Absence of kin discrimination in hatchling American alligators, Alligator mississippiensis. Copeia, 1999(3), 831–835. https://doi.org/10.2307/1447624.

    Article  Google Scholar 

  • Reber, S. A., Janisch, J., Torregrosa, K., Darlington, J., Vliet, K. A., & Fitch, W. T. (2017). Formants provide honest acoustic cues to body size in American alligators. Scientific Reports, 7(1816), 1–11. https://doi.org/10.1038/s41598-017-01948-1.

    Article  Google Scholar 

  • Reber, S. A., Nishimura, T., Janisch, J., Robertson, M., & Fitch, W. T. (2015). A Chinese alligator in heliox: Formant frequencies in a crocodilian. Journal of Experimental Biology, 218(15), 2442–2447. https://doi.org/10.1242/jeb.119552.

    Article  Google Scholar 

  • Riede, T., Li, Z., Tokuda, I. T., & Farmer, C. G. (2015). Functional morphology of the Alligator mississippiensis larynx with implications for vocal production. Journal of Experimental Biology, 218(7), 991–998. https://doi.org/10.1242/jeb.117101.

    Article  Google Scholar 

  • Somaweera, R., & Shine, R. (2012). Australian freshwater crocodiles (Crocodylus johnstoni) transport their hatchlings to the water. Journal of Herpetology, 46(3), 407–411.

    Article  Google Scholar 

  • Todd, N. P. M. (2007). Estimated source intensity and active space of the American alligator (Alligator mississippiensis) vocal display. The Journal of the Acoustical Society of America, 122(5), 2906–2915. https://doi.org/10.1121/1.2785811.

    Article  PubMed  Google Scholar 

  • Vergne, A. L., Aubin, T., Martin, S., & Mathevon, N. (2012). Acoustic communication in crocodilians: Information encoding and species specificity of juvenile calls. Animal Cognition, 15(6), 1095–1109. https://doi.org/10.1007/s10071-012-0533-7.

    Article  PubMed  Google Scholar 

  • Vergne, A. L., Aubin, T., Taylor, P., & Mathevon, N. (2011). Acoustic signals of baby black caimans. Zoology, 114(6), 313–320. https://doi.org/10.1016/j.zool.2011.07.003.

    Article  PubMed  Google Scholar 

  • Vergne, A. L., Avril, A., Martin, S., & Mathevon, N. (2007). Parent-offspring communication in the Nile crocodile Crocodylus niloticus: Do newborns’ calls show an individual signature? Naturwissenschaften, 94(1), 49–54. https://doi.org/10.1007/s00114-006-0156-4.

    Article  PubMed  Google Scholar 

  • Vergne, A. L., & Mathevon, N. (2008). Crocodile egg sounds signal hatching time. Current Biology, 18(12), R513–R514. https://doi.org/10.1016/j.cub.2008.04.011.

    Article  PubMed  Google Scholar 

  • Vergne, A. L., Pritz, M. B., & Mathevon, N. (2009). Acoustic communication in crocodilians: From behaviour to brain. Biological Reviews, 84(3), 391–411. https://doi.org/10.1111/j.1469-185X.2009.00079.x.

    Article  PubMed  Google Scholar 

  • Vliet, K. A. (1989). Social displays of the American alligator (Alligator mississippiensis). American Zoologist, 29(3), 1019–1031.

    Article  Google Scholar 

  • Vliet, K. A. (2001). Courtship behaviour of American alligators Alligator mississippiensis. In G. C. Grigg, F. Seebacher, & C. E. Franklin (Eds.), Crocodilian biology and evolution (pp. 383–408). Chipping Norton: Surrey Beatty & Sons.

    Google Scholar 

  • Wang, X., Wang, D., Zhang, S., Wang, C., Wang, R., & Wu, X. (2009). Why do Chinese alligators (Alligator sinensis) form bellowing choruses: A playback approach. The Journal of the Acoustical Society of America, 126(4), 2082–2087. https://doi.org/10.1121/1.3203667.

    Article  PubMed  Google Scholar 

  • Weldon, P. J., Scott, T. P., & Tanner, M. J. (1990). Analysis of gular and paracloacal gland secretions of the American alligator (Alligator mississippiensis) by thin-layer chromatography: Gland, sex, and individual differences in lipid components. Journal of Chemical Ecology, 16(1), 3–12. https://doi.org/10.1007/BF01021263.

    Article  PubMed  Google Scholar 

  • Whitaker, R. (2007). The gharial: Going extinct again (gharial multi-task force). Iguana, 14(1), 24–33.

    Google Scholar 

  • Whyte, A., Yang, Z.-C., Tiyanont, K., Weldon, P. J., Eisner, T., & Meinwald, J. (1999). Reptilian chemistry: Characterization of dianeackerone, a secretory product from a crocodile. Proceedings of the National Academy of Sciences, 96(22), 12246–12250.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan A. Reber .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Reber, S.A. (2020). Crocodylia Communication. In: Vonk, J., Shackelford, T. (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-47829-6_950-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47829-6_950-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47829-6

  • Online ISBN: 978-3-319-47829-6

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Crocodylia Communication
    Published:
    19 February 2021

    DOI: https://doi.org/10.1007/978-3-319-47829-6_950-2

  2. Original

    Crocodilia Communication
    Published:
    25 April 2018

    DOI: https://doi.org/10.1007/978-3-319-47829-6_950-1