Skip to main content

Seismic Demand on Acceleration-Sensitive Nonstructural Components

  • Chapter
  • First Online:
Computational Methods in Earthquake Engineering

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 44))

  • 1148 Accesses

Abstract

Nonstructural components should be subjected to a careful and rational seismic design, in order to reduce economic loss and to avoid threats to the life safety, as well as what concerns structural elements. The design of nonstructural components is based on the evaluation of the maximum inertial force, which is related to the floor spectral accelerations. The question arises as to whether the European Building Code, i.e. Eurocode 8, is able to predict actual floor response spectral accelerations occurring in structures designed according to its provisions. A parametric study is therefore conducted on five RC frame structures designed according to Eurocode 8. It shows that Eurocode formulation for the evaluation of the seismic demand on nonstructural components does not well fit the analytical results for a wide range of periods, particularly in the vicinity of the higher mode periods of vibration of the reference structures. The inconsistent approach of current European building codes to the design of nonstructural components is also highlighted. For this reason a parametric study is conducted in order to evaluate the seismic demand on light acceleration-sensitive nonstructural components caused by frequent earthquakes. The above mentioned RC frame structures are therefore subjected to a set of frequent earthquakes, i.e. 63 % probability of exceedance in 50 years. A novel formulation is proposed for an easy implementation in future building codes based on the actual Eurocode provisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambraseys N, Smit P, Sigbjornsson R, Suhadolc P, Margaris B (2002) Internet-Site for European strong-motion data. European Commission, Research-Directorate General, Environment and Climate Programme

    Google Scholar 

  2. American Society of Civil Engineers (2010) ASCE/SEI 7-10: minimum design loads for buildings and other structures. Reston, Virginia, US

    Google Scholar 

  3. CEN (2004a) Eurocode 2: Design of concrete structures—Part 1–1: general rules and rules for buildings. EN 1992-1-1. Brussels, Belgium

    Google Scholar 

  4. CEN (2004b) Eurocode 8: design of structures for earthquake resistance—Part 1: general rules, seismic actions and rules for buildings. EN 1998-1. Brussels, Belgium

    Google Scholar 

  5. Chaudhuri S, Villaverde R (2008) Effect of building nonlinearity on seismic response of nonstructural components: a parametric study. J Struct Eng 134(4):661–670. doi:10.1061/(ASCE)0733-9445

    Article  Google Scholar 

  6. Consiglio Superiore dei Lavori Pubblici (2008) Decreto Ministeriale del 14/01/2008, Approvazione delle nuove norme tecniche per le costruzioni. G.U. n. 29 del 4/2/2008 (in Italian)

    Google Scholar 

  7. Consiglio Superiore dei Lavori Pubblici (2009) Circolare 2 febbraio 2009, n. 617, Istruzioni per l’applicazione delle «Nuove norme tecniche per le costruzioni». G.U. n. 27 del 26-2-2009 (in Italian)

    Google Scholar 

  8. Fathali S, Lizundia B (2011) Evaluation of current seismic design equations for nonstructural components in tall buildings using strong motion records. Struct Des Tall Spec Buildings 20:30–46. doi:10.1002/tal.736

    Article  Google Scholar 

  9. Fischinger M, Ercolino M, Kramar M, Petrone C, Isakovic T (2011a) Inelastic seismic shear in multi-storey cantilever columns. Paper presented at the 3rd international conference on computational methods in structural dynamics and earthquake engineering, COMPDYN 2011, Corfu, Greece, 25–28 May 2011

    Google Scholar 

  10. Fischinger M, Ercolino M, Kramar M, Petrone C, Isakovic T (2011b) Inelastic seismic shear in multi-storey cantilever columns. In: ECCOMAS Thematic conference—COMPDYN 2011: 3rd international conference on computational methods in structural dynamics and earthquake engineering: an IACM special interest conference, programme

    Google Scholar 

  11. Gatscher JA, Bachman R (2012) Elements of 2012 IBC/ASCE 7–10 Nonstructural seismic provisions: bridging the implementation gap. Paper presented at the 15th world conference on earthquake engineering, Lisboa, Portugal

    Google Scholar 

  12. Haselton CB (2006) Assessing seismic collapse safety of modern reinforced concrete moment frame buildings. Ph.D. thesis, Stanford University, California, US

    Google Scholar 

  13. Ibarra LF, Medina RA, Krawinkler H (2005) Hysteretic models that incorporate strength and stiffness deterioration. Earthq Eng Struct Dyn 34(12):1489–1511. doi:10.1002/eqe.495

    Article  Google Scholar 

  14. Maddaloni G, Magliulo G, Cosenza E (2012) Effect of the seismic input on non-linear response of R/C building structures. Adv Struct Eng 15(10):1861–1877

    Article  Google Scholar 

  15. Mander J, Priestley M, Park R (1988) Theoretical stress-strain model for confined concrete. J Struct Eng 114(8):1804–1826 10.1061/(ASCE)0733-9445

    Article  Google Scholar 

  16. McKenna F, Fenves GL (2013) OpenSees Manual. Pacific Earthquake Engineering Research Center, Berkeley, California. http://opensees.berkeley.edu

  17. Medina RA, Sankaranarayanan R, Kingston KM (2006) Floor response spectra for light components mounted on regular moment-resisting frame structures. Eng Struct 28(14):1927–1940. doi:10.1016/j.engstruct.2006.03.022

    Article  Google Scholar 

  18. Petrone C, Magliulo G, Manfredi G (2014) Shake table tests for the seismic assessment of hollow brick internal partitions. Eng Struct 72:203–214. doi:10.1016/j.engstruct.2014.04.044

    Article  Google Scholar 

  19. Petrone C, Magliulo G, Manfredi G (2015) Seismic demand on light acceleration-sensitive nonstructural components in European reinforced concrete buildings. Earthq Eng Struct Dyn 44:1203–1217. doi:10.1002/eqe.2508

    Article  Google Scholar 

  20. Petrone C, Magliulo G, Manfredi G (2016) Floor response spectra in RC frame structures designed according to Eurocode 8. Bull Earthq Eng 14(3):747–767. doi:10.1007/s10518-015-9846-7

    Article  Google Scholar 

  21. Politopoulos I (2010) Floor spectra of MDOF nonlinear structures. J Earth Eng 14(5):726–742. doi:10.1080/13632460903427826

    Article  Google Scholar 

  22. Ray-Chaudhuri S, Hutchinson TC (2011) Effect of nonlinearity of frame buildings on peak horizontal floor acceleration. J Earth Eng 15(1):124–142. doi:10.1080/13632461003668046

    Article  Google Scholar 

  23. Rejec K, Isaković T, Fischinger M (2012) Seismic shear force magnification in RC cantilever structural walls, designed according to Eurocode 8. Bull Earthq Eng 10(2):567–586. doi:10.1007/s10518-011-9294-y

    Article  Google Scholar 

  24. Rodriguez ME, Restrepo JI, Carr AJ (2002) Earthquake-induced floor horizontal accelerations in buildings. Earthq Eng Struct Dyn 31(3):693–718. doi:10.1002/eqe.149

    Article  Google Scholar 

  25. Sankaranarayanan R, Medina RA (2007) Acceleration response modification factors for nonstructural components attached to inelastic moment-resisting frame structures. Earthq Eng Struct Dyn 36(14):2189–2210. doi:10.1002/eqe.724

    Article  Google Scholar 

  26. Singh M, Moreschi L, Suárez L, Matheu E (2006) Seismic design forces. I: rigid nonstructural components. J Struct Eng 132(10):1524–1532 10.1061/(ASCE)0733-9445

    Article  Google Scholar 

  27. Singh M, Moreschi L, Suárez L, Matheu E (2006) Seismic design forces. II: flexible nonstructural components. J Struct Eng 132(10):1533–1542 10.1061/(ASCE)0733-9445

    Article  Google Scholar 

  28. Structural Engineers Association of California (SEAOC) (1995) Vision 2000—a framework for performance-based design. California Office of Emergency Services

    Google Scholar 

  29. Stucchi M, Meletti C, Montaldo V, Crowley H, Calvi GM, Boschi E (2011) Seismic hazard assessment (2003–2009) for the Italian building code. Bull Seismol Soc Am 101(4):1885–1911. doi:10.1785/0120100130

    Article  Google Scholar 

  30. Velasquez JF, Restrepo J, Blandon CA (2012) Floor response spectra for the design of acceleration sensitive light nonstructural systems in buildings. Paper presented at the 15th world conference on earthquake engineering, Lisboa, Portugal, 24–28 Sept 2013

    Google Scholar 

  31. Wieser J, Pekcan G, Zaghi AE, Itani A, Maragakis M (2013) Floor accelerations in yielding special moment resisting frame structures. Earthq Spectra 29(3):987–1002. doi:10.1193/1.4000167

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro Magliulo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Magliulo, G., Petrone, C., Manfredi, G. (2017). Seismic Demand on Acceleration-Sensitive Nonstructural Components. In: Papadrakakis, M., Plevris, V., Lagaros, N. (eds) Computational Methods in Earthquake Engineering. Computational Methods in Applied Sciences, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-47798-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47798-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47796-1

  • Online ISBN: 978-3-319-47798-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics