Skip to main content

Performance of Target-Controlled Infusion Systems

  • Chapter
  • First Online:
Total Intravenous Anesthesia and Target Controlled Infusions

Abstract

The purpose of target-controlled infusion (TCI) is to calculate the amount of drug, based on published pharmacokinetic-pharmacodynamic models, required to achieve and maintain a desirable target, such as drug concentration in the plasma, at the effect-site or its therapeutic effect. Infusion algorithm of TCI devices are typically tuned with patient characteristics, including age, weight and gender. However, different pharmacokinetic models produce important differences in the amount of drug infused and may influence the accuracy of the TCI devices. It is therefore important to understand the performance of different models in order to choose the appropriate one for any individual patient. This chapter outlines the methodology for assessing performance of TCI systems, evaluates the common sources of error and reports the accuracy of various TCI protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Absalom AR, Mani V, De Smet T, Struys MM. Pharmacokinetic models for propofol-defining and illuminating the devil in the detail. Br J Anaesth. 2009;103:26–37.

    Article  CAS  PubMed  Google Scholar 

  2. Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm. 1981;9:503–12.

    Article  CAS  PubMed  Google Scholar 

  3. Grossherr M, Hengstenberg A, Meier T, Dibbelt L, Igl BW, Ziegler A, Schmucker P, Gehring H. Propofol concentration in exhaled air and arterial plasma in mechanically ventilated patients undergoing cardiac surgery. Br J Anaesth. 2009;102:608–13.

    Article  CAS  PubMed  Google Scholar 

  4. Takita A, Masui K, Kazama T. On-line monitoring of end-tidal propofol concentration in anesthetized patients. Anesthesiology. 2007;106:659–64.

    Article  CAS  PubMed  Google Scholar 

  5. Colin P, Eleveld DJ, van den Berg JP, Vereecke HE, Struys MM, Schelling G, Apfel CC, Hornuss C. Propofol breath monitoring as a potential tool to improve the prediction of intraoperative plasma concentrations. Clin Pharmacokinet. 2015.

    Google Scholar 

  6. Ngan Kee WD, Khaw KS, Ng FF, Tam YH. Randomized comparison of closed-loop feedback computer-controlled with manual-controlled infusion of phenylephrine for maintaining arterial pressure during spinal anaesthesia for caesarean delivery. Br J Anaesth. 2013;110:59–65.

    Article  CAS  PubMed  Google Scholar 

  7. Morley A, Derrick J, Mainland P, Lee BB, Short TG. Closed loop control of anaesthesia: an assessment of the bispectral index as the target of control. Anaesthesia. 2000;55:953–9.

    Article  CAS  PubMed  Google Scholar 

  8. Ionescu CM, De Keyser R, Torrico BC, De Smet T, Struys MM, Normey-Rico JE. Robust predictive control strategy applied for propofol dosing using BIS as a controlled variable during anesthesia. IEEE Trans Biomed Eng. 2008;55:2161–70.

    Article  PubMed  Google Scholar 

  9. Absalom AR, Sutcliffe N, Kenny GN. Closed-loop control of anesthesia using Bispectral index: performance assessment in patients undergoing major orthopedic surgery under combined general and regional anesthesia. Anesthesiology. 2002;96:67–73.

    Article  PubMed  Google Scholar 

  10. Doufas AG, Bakhshandeh M, Bjorksten AR, Greif R, Sessler DI. A new system to target the effect-site during propofol sedation. Acta Anaesthesiol Scand. 2003;47:944–50.

    Article  CAS  PubMed  Google Scholar 

  11. Varvel JR, Donoho DL, Shafer SL. Measuring the predictive performance of computer-controlled infusion pumps. J Pharmacokinet Biopharm. 1992;20:63–94.

    Article  CAS  PubMed  Google Scholar 

  12. Gelb AW, Craen RA, Rao GS, Reddy KR, Megyesi J, Mohanty B, Dash HH, Choi KC, Chan MT. Does hyperventilation improve operating condition during supratentorial craniotomy? A multicenter randomized crossover trial. Anesth Analg. 2008;106:585–94.

    Article  PubMed  Google Scholar 

  13. Tam YH. Computer control infusion pump (CCIP) version 2.4; released in December, 2010. Available at www.cuhk.edu.hk/med/ans/softwares.htm.

  14. Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, Youngs EJ. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology. 1998;88:1170–82.

    Article  CAS  PubMed  Google Scholar 

  15. Schnider TW, Minto CF, Shafer SL, Gambus PL, Andresen C, Goodale DB, Youngs EJ. The influence of age on propofol pharmacodynamics. Anesthesiology. 1999;90:1502–16.

    Article  CAS  PubMed  Google Scholar 

  16. Eleveld DJ, Proost JH, Cortinez LI, Absalom AR, Struys MM. A general purpose pharmacokinetic model for propofol. Anesth Analg. 2014;118:1221–37.

    Article  CAS  PubMed  Google Scholar 

  17. Swinhoe CF, Peacock JE, Glen JB, Reilly CS. Evaluation of the predictive performance of a ‘Diprifusor’ TCI system. Anaesthesia. 1998;53 Suppl 1:61–7.

    Article  CAS  PubMed  Google Scholar 

  18. Schuttler J, Kloos S, Schwilden H, Stoeckel H. Total intravenous anaesthesia with propofol and alfentanil by computer-assisted infusion. Anaesthesia. 1988;43(Suppl):2–7.

    Article  PubMed  Google Scholar 

  19. Schnider TW, Minto CF, Struys MM, Absalom AR. The safety of target-controlled infusions. Anesth Analg. 2016;122:79–85.

    Article  CAS  PubMed  Google Scholar 

  20. Zbinden AM, Petersenfelix S, Thomson DA. Anesthetic depth defined using multiple noxious stimuli during isoflurane/oxygen anesthesia. II. hemodynamic responses. Anesthesiology. 1994;80:261–7.

    Article  CAS  PubMed  Google Scholar 

  21. Zbinden AM, Maggiorini M, Petersenfelix S, Lauber R, Thomson DA, Minder CE. Anesthetic depth defined using multiple noxious stimuli during isoflurane/oxygen anesthesia. I. Motor reactions. Anesthesiology. 1994;80:253–60.

    Article  CAS  PubMed  Google Scholar 

  22. Smith JH, Karthikeyan G. Foreign body occlusion of syringe driver mechanism. Eur J Anaesthesiol. 2007;24:1063–4.

    Article  CAS  PubMed  Google Scholar 

  23. Maruyama K, Hara K. Accidental propofol infusion from a prefilled propofol syringe. Br J Anaesth. 2004;93:479–80.

    Article  CAS  PubMed  Google Scholar 

  24. Laurent S, Fry R, Nixon C. Serial failure of Diprifuser infusion pumps. Anaesthesia. 2001;56:596–7.

    Article  CAS  PubMed  Google Scholar 

  25. Cox IR. Target controlled infusion pump failure due to worn drive nut. Anaesth Intensive Care. 2012;40:186–7.

    PubMed  Google Scholar 

  26. Corcoran EL, Riley RH. Occlusion of a syringe pump by plastic cap. Anaesth Intensive Care. 2003;31:234.

    CAS  PubMed  Google Scholar 

  27. Breslin D. Failure of a ‘Diprivan 1%’ prefilled propofol syringe. Anaesthesia. 2000;55:1030–1.

    Article  CAS  PubMed  Google Scholar 

  28. Sistema Espanol de Notificacion en Seguridad en Anestesia y R. Incorrect programming of a target controlled infusion pump. Case SENSAR of the trimester. Rev Esp Anestesiol Reanim 2014;61:e27-30.

    Google Scholar 

  29. Glen JB. The development of ‘Diprifusor’: a TCI system for propofol. Anaesthesia. 1998;53 Suppl 1:13–21.

    Article  CAS  PubMed  Google Scholar 

  30. Absalom AR, Glen JI, Zwart GJ, Schnider TW, Struys MM. Target-controlled infusion: a mature technology. Anesth Analg. 2016;122:70–8.

    Article  CAS  PubMed  Google Scholar 

  31. Wijnen B, Hunt EJ, Anzalone GC, Pearce JM. Open-source syringe pump library. PLoS One. 2014;9, e107216.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Connor SB, Quill TJ, Jacobs JR. Accuracy of drug infusion pumps under computer control. IEEE Trans Biomed Eng. 1992;39:980–2.

    Article  CAS  PubMed  Google Scholar 

  33. Schraag S, Flaschar J. Delivery performance of commercial target-controlled infusion devices with Diprifusor module. Eur J Anaesthesiol. 2002;19:357–60.

    Article  CAS  PubMed  Google Scholar 

  34. Weiss M, Fischer J, Neff T, Baenziger O. The effects of syringe plunger design on drug delivery during vertical displacement of syringe pumps. Anaesthesia. 2000;55:1094–8.

    Article  CAS  PubMed  Google Scholar 

  35. Neff T, Fischer J, Fehr S, Baenziger O, Weiss M. Start-up delays of infusion syringe pumps. Paediatr Anaesth. 2001;11:561–5.

    Article  CAS  PubMed  Google Scholar 

  36. Kim JY, Moon BK, Lee JH, Jo YY, Min SK. Impact of priming the infusion system on the performance of target-controlled infusion of remifentanil. Korean J Anesthesiol. 2013;64:407–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Neff T, Fischer J, Fehr S, Baenziger O, Weiss M. Evaluation of the FASTSTART mode for reducing start-up delay in syringe pump infusion systems. Swiss Med Wkly. 2001;131:219–22.

    CAS  PubMed  Google Scholar 

  38. Chae YJ, Kim JY, Kim DW, Moon BK, Min SK. False selection of syringe-brand compatibility and the method of correction during target-controlled infusion of propofol. Korean J Anesthesiol. 2013;64:251–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schmidt N, Saez C, Seri I, Maturana A. Impact of syringe size on the performance of infusion pumps at low flow rates. Pediatr Crit Care Med. 2010;11:282–6.

    Article  PubMed  Google Scholar 

  40. Weiss M, Banziger O, Neff T, Fanconi S. Influence of infusion line compliance on drug delivery rate during acute line loop formation. Intensive Care Med. 2000;26:776–9.

    Article  CAS  PubMed  Google Scholar 

  41. Neff SB, Neff TA, Gerber S, Weiss MM. Flow rate, syringe size and architecture are critical to start-up performance of syringe pumps. Eur J Anaesthesiol. 2007;24:602–8.

    Article  CAS  PubMed  Google Scholar 

  42. Weiss M, Fischer J, Neff T, Schulz G, Banziger O. Do antisiphon valves reduce flow irregularities during vertical displacement of infusion pump systems? Anaesth Intensive Care. 2000;28:680–3.

    CAS  PubMed  Google Scholar 

  43. Lannoy D, Decaudin B, Dewulf S, Simon N, Secq A, Barthelemy C, Debaene B, Odou P. Infusion set characteristics such as antireflux valve and dead-space volume affect drug delivery: an experimental study designed to enhance infusion sets. Anesth Analg. 2010;111:1427–31.

    Article  CAS  PubMed  Google Scholar 

  44. McCarroll C, McAtamney D, Taylor R. Alteration in flow delivery with antisyphon devices. Anaesthesia. 2000;55:355–7.

    Article  CAS  PubMed  Google Scholar 

  45. Decaudin B, Dewulf S, Lannoy D, Simon N, Secq A, Barthelemy C, Debaene B, Odou P. Impact of multiaccess infusion devices on in vitro drug delivery during multi-infusion therapy. Anesth Analg. 2009;109:1147–55.

    Article  CAS  PubMed  Google Scholar 

  46. Timmerman AM, Snijder RA, Lucas P, Lagerweij MC, Radermacher JH, Konings MK. How physical infusion system parameters cause clinically relevant dose deviations after setpoint changes. Biomed Tech (Berl). 2015;60:365–76.

    Google Scholar 

  47. Schulz G, Fischer J, Neff T, Banziger O, Weiss M. The effect of air within the infusion syringe on drug delivery of syringe pump infusion systems. Anaesthesist. 2000;49:1018–23.

    Article  CAS  PubMed  Google Scholar 

  48. Davey C, Stather-Dunn T. Very small air bubbles (10 - 70 microl) cause clinically significant variability in syringe pump fluid delivery. J Med Eng Technol. 2005;29:130–6.

    Article  CAS  PubMed  Google Scholar 

  49. Adapa RM, Axell RG, Mangat JS, Carpenter TA, Absalom AR. Safety and performance of TCI pumps in a magnetic resonance imaging environment. Anaesthesia. 2012;67:33–9.

    Article  CAS  PubMed  Google Scholar 

  50. Bell J, Weaver LK, Deru K. Performance of the Hospira Plum A plus (HB) hyperbaric infusion pump. Undersea Hyperb Med. 2014;41:235–43.

    PubMed  Google Scholar 

  51. Lavon H, Shupak A, Tal D, Ziser A, Abramovich A, Yanir Y, Shoshani O, Gil A, Leiba R, Nachum Z. Performance of infusion pumps during hyperbaric conditions. Anesthesiology. 2002;96:849–54.

    Article  PubMed  Google Scholar 

  52. Dyck JB, Shafer SL. Effects of age on propofol pharmacokinetics. Semin Anesth. 1992;11:2–4.

    Google Scholar 

  53. Gepts E, Camu F, Cockshott ID, Douglas EJ. Disposition of propofol administered as constant rate intravenous infusions in humans. Anesth Analg. 1987;66:1256–63.

    Article  CAS  PubMed  Google Scholar 

  54. Kataria BK, Ved SA, Nicodemus HF, Hoy GR, Lea D, Dubois MY, Mandema JW, Shafer SL. The pharmacokinetics of propofol in children using three different data analysis approaches. Anesthesiology. 1994;80:104–22.

    Article  CAS  PubMed  Google Scholar 

  55. Marsh B, White M, Morton N, Kenny GN. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth. 1991;67:41–8.

    Article  CAS  PubMed  Google Scholar 

  56. Schuttler J, Stoeckel H, Schwilden H. Pharmacokinetic and pharmacodynamic modelling of propofol (‘Diprivan’) in volunteers and surgical patients. Postgrad Med J. 1985;61 Suppl 3:53–4.

    PubMed  Google Scholar 

  57. Schuttler J, Ihmsen H. Population pharmacokinetics of propofol: a multicenter study. Anesthesiology. 2000;92:727–38.

    Article  CAS  PubMed  Google Scholar 

  58. Absalom A, Kenny G. ‘Paedfusor’ pharmacokinetic data set. Br J Anaesth. 2005;95:110.

    Article  CAS  PubMed  Google Scholar 

  59. Absalom A, Amutike D, Lal A, White M, Kenny GN. Accuracy of the ‘Paedfusor’ in children undergoing cardiac surgery or catheterization. Br J Anaesth. 2003;91:507–13.

    Article  CAS  PubMed  Google Scholar 

  60. Tackley RM, Lewis GT, Prys-Roberts C, Boaden RW, Dixon J, Harvey JT. Computer controlled infusion of propofol. Br J Anaesth. 1989;62:46–53.

    Article  CAS  PubMed  Google Scholar 

  61. Lemmens HJ, Burm AG, Hennis PJ, Gladines MP, Bovill JG. Influence of age on the pharmacokinetics of alfentanil. Gender dependence. Clin Pharmacokinet. 1990;19:416–22.

    Article  CAS  PubMed  Google Scholar 

  62. Maitre PO, Vozeh S, Heykants J, Thomson DA, Stanski DR. Population pharmacokinetics of alfentanil: the average dose-plasma concentration relationship and interindividual variability in patients. Anesthesiology. 1987;66:3–12.

    Article  CAS  PubMed  Google Scholar 

  63. Scott JC, Stanski DR. Decreased fentanyl and alfentanil dose requirements with age. A simultaneous pharmacokinetic and pharmacodynamic evaluation. J Pharmacol Exp Ther. 1987;240:159–66.

    CAS  PubMed  Google Scholar 

  64. Hudson RJ, Thomson IR, Cannon JE, Friesen RM, Meatherall RC. Pharmacokinetics of fentanyl in patients undergoing abdominal aortic surgery. Anesthesiology. 1986;64:334–8.

    Article  CAS  PubMed  Google Scholar 

  65. McClain DA, Hug Jr CC. Intravenous fentanyl kinetics. Clin Pharmacol Ther. 1980;28:106–14.

    Article  CAS  PubMed  Google Scholar 

  66. Shafer SL, Varvel JR, Aziz N, Scott JC. Pharmacokinetics of fentanyl administered by computer-controlled infusion pump. Anesthesiology. 1990;73:1091–102.

    Article  CAS  PubMed  Google Scholar 

  67. Varvel JR, Shafer SL, Hwang SS, Coen PA, Stanski DR. Absorption characteristics of transdermally administered fentanyl. Anesthesiology. 1989;70:928–34.

    Article  CAS  PubMed  Google Scholar 

  68. Egan TD, Lemmens HJ, Fiset P, Hermann DJ, Muir KT, Stanski DR, Shafer SL. The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers. Anesthesiology. 1993;79:881–92.

    Article  CAS  PubMed  Google Scholar 

  69. Minto CF, Schnider TW, Egan TD, Youngs E, Lemmens HJM, Gambus PL, Billard V, Hoke JF, Moore KHP, Hermann DJ, Muir KT, Mandema JW, Shafer SL. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology. 1997;86:10–23.

    Article  CAS  PubMed  Google Scholar 

  70. Minto CF, Schnider TW, Shafer SL. Pharmacokinetics and pharmacodynamics of remifentanil. II. Model application. Anesthesiology. 1997;86:24–33.

    Article  CAS  PubMed  Google Scholar 

  71. Bovill JG, Sebel PS, Blackburn CL, Oei-Lim V, Heykants JJ. The pharmacokinetics of sufentanil in surgical patients. Anesthesiology. 1984;61:502–6.

    Article  CAS  PubMed  Google Scholar 

  72. Gepts E, Shafer SL, Camu F, Stanski DR, Woestenborghs R, Van Peer A, Heykants JJ. Linearity of pharmacokinetics and model estimation of sufentanil. Anesthesiology. 1995;83:1194–204.

    Article  CAS  PubMed  Google Scholar 

  73. Arden JR, Holley FO, Stanski DR. Increased sensitivity to etomidate in the elderly: initial distribution versus altered brain response. Anesthesiology. 1986;65:19–27.

    Article  CAS  PubMed  Google Scholar 

  74. Domino EF, Domino SE, Smith RE, Domino LE, Goulet JR, Domino KE, Zsigmond EK. Ketamine kinetics in unmedicated and diazepam-premedicated subjects. Clin Pharmacol Ther. 1984;36:645–53.

    Article  CAS  PubMed  Google Scholar 

  75. Greenblatt DJ, Abernethy DR, Locniskar A, Harmatz JS, Limjuco RA, Shader RI. Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology. 1984;61:27–35.

    Article  CAS  PubMed  Google Scholar 

  76. Stanski DR, Maitre PO. Population pharmacokinetics and pharmacodynamics of thiopental: the effect of age revisited. Anesthesiology. 1990;72:412–22.

    Article  CAS  PubMed  Google Scholar 

  77. Sorbo S, Hudson RJ, Loomis JC. The pharmacokinetics of thiopental in pediatric surgical patients. Anesthesiology. 1984;61:666–70.

    Article  CAS  PubMed  Google Scholar 

  78. Kirkpatrick T, Cockshott ID, Douglas EJ, Nimmo WS. Pharmacokinetics of propofol (diprivan) in elderly patients. Br J Anaesth. 1988;60:146–50.

    Article  CAS  PubMed  Google Scholar 

  79. Shafer A, Doze VA, Shafer SL, White PF. Pharmacokinetics and pharmacodynamics of propofol infusions during general anesthesia. Anesthesiology. 1988;69:348–56.

    Article  CAS  PubMed  Google Scholar 

  80. van den Broek L, Wierda JM, Smeulers NJ, van Santen GJ, Leclercq MG, Hennis PJ. Clinical pharmacology of rocuronium (Org 9426): study of the time course of action, dose requirement, reversibility, and pharmacokinetics. J Clin Anesth. 1994;6:288–96.

    Article  PubMed  Google Scholar 

  81. Coetzee JF, Glen JB, Wium CA, Boshoff L. Pharmacokinetic model selection for target controlled infusions of propofol. Assessment of three parameter sets. Anesthesiology. 1995;82:1328–45.

    Article  CAS  PubMed  Google Scholar 

  82. Short TG, Lim TA, Tam YH. Prospective evaluation of pharmacokinetic model-controlled infusion of propofol in adult patients. Br J Anaesth. 1996;76:313–5.

    Article  CAS  PubMed  Google Scholar 

  83. Oei-Lim VL, White M, Kalkman CJ, Engbers FH, Makkes PC, Ooms WG. Pharmacokinetics of propofol during conscious sedation using target-controlled infusion in anxious patients undergoing dental treatment. Br J Anaesth. 1998;80:324–31.

    Article  CAS  PubMed  Google Scholar 

  84. Barvais L, Rausin I, Glen JB, Hunter SC, D’Hulster D, Cantraine F, d’Hollander A. Administration of propofol by target-controlled infusion in patients undergoing coronary artery surgery. J Cardiothorac Vasc Anesth. 1996;10:877–83.

    Article  CAS  PubMed  Google Scholar 

  85. Pandin PC, Cantraine F, Ewalenko P, Deneu SC, Coussaert E, d’Hollander AA. Predictive accuracy of target-controlled propofol and sufentanil coinfusion in long-lasting surgery. Anesthesiology. 2000;93:653–61.

    Article  CAS  PubMed  Google Scholar 

  86. Sabate Tenas S, Soler Corbera J, Queralto Companyo JM, Baxarias Gascon P. Predictive capability of the TCI Diprifusor system in patients with terminal chronic renal insufficiency. Rev Esp Anestesiol Reanim. 2003;50:381–7.

    CAS  PubMed  Google Scholar 

  87. Cavaliere F, Conti G, Moscato U, Meo F, Pennisi MA, Costa R, Proietti R. Hypoalbuminaemia does not impair Diprifusor performance during sedation with propofol. Br J Anaesth. 2005;94:453–8.

    Article  CAS  PubMed  Google Scholar 

  88. Li YH, Xu JH, Yang JJ, Tian J, Xu JG. Predictive performance of ‘Diprifusor’ TCI system in patients during upper abdominal surgery under propofol/fentanyl anesthesia. J Zhejiang Univ Sci B. 2005;6:43–8.

    Article  PubMed  Google Scholar 

  89. Wu J, Zhu SM, He HL, Weng XC, Huang SQ, Chen YZ. Plasma propofol concentrations during orthotopic liver transplantation. Acta Anaesthesiol Scand. 2005;49:804–10.

    Article  CAS  PubMed  Google Scholar 

  90. Wietasch JK, Scholz M, Zinserling J, Kiefer N, Frenkel C, Knufermann P, Brauer U, Hoeft A. The performance of a target-controlled infusion of propofol in combination with remifentanil: a clinical investigation with two propofol formulations. Anesth Analg. 2006;102:430–7.

    Article  CAS  PubMed  Google Scholar 

  91. Albertin A, Poli D, La Colla L, Gonfalini M, Turi S, Pasculli N, La Colla G, Bergonzi PC, Dedola E, Fermo I. Predictive performance of ‘Servin’s formula’ during BIS-guided propofol-remifentanil target-controlled infusion in morbidly obese patients. Br J Anaesth. 2007;98:66–75.

    Article  CAS  PubMed  Google Scholar 

  92. La Colla L, Albertin A, La Colla G, Ceriani V, Lodi T, Porta A, Aldegheri G, Mangano A, Khairallah I, Fermo I. No adjustment vs. adjustment formula as input weight for propofol target-controlled infusion in morbidly obese patients. Eur J Anaesthesiol. 2009;26:362–9.

    Article  PubMed  CAS  Google Scholar 

  93. Cowley NJ, Hutton P, Clutton-Brock TH. Assessment of the performance of the Marsh model in effect site mode for target controlled infusion of propofol during the maintenance phase of general anaesthesia in an unselected population of neurosurgical patients. Eur J Anaesthesiol. 2013;30:627–32.

    Article  CAS  PubMed  Google Scholar 

  94. Cortinez LI, De la Fuente N, Eleveld DJ, Oliveros A, Crovari F, Sepulveda P, Ibacache M, Solari S. Performance of propofol target-controlled infusion models in the obese: pharmacokinetic and pharmacodynamic analysis. Anesth Analg. 2014;119:302–10.

    Article  CAS  PubMed  Google Scholar 

  95. Tachibana N, Niiyama Y, Yamakage M. Evaluation of bias in predicted and measured propofol concentrations during target-controlled infusions in obese Japanese patients: an open-label comparative study. Eur J Anaesthesiol. 2014;31:701–7.

    Article  CAS  PubMed  Google Scholar 

  96. Sitsen E, Olofsen E, Lesman A, Dahan A, Vuyk J. Epidural blockade affects the pharmacokinetics of propofol in surgical patients. Anesth Analg. 2015;122:1341–9. doi:10.1213/ANE.0000000000001090.

    Article  CAS  Google Scholar 

  97. Mathew PJ, Sailam S, Sivasailam R, Thingnum SK, Puri GD. Performance of target-controlled infusion of propofol using two different pharmacokinetic models in open heart surgery - a randomised controlled study. Perfusion. 2016;31:45–53.

    Article  CAS  PubMed  Google Scholar 

  98. Lim TA, Gin T, Tam YH, Aun CS, Short TG. Computer-controlled infusion of propofol for long neurosurgical procedures. J Neurosurg Anesthesiol. 1997;9:242–9.

    Article  CAS  PubMed  Google Scholar 

  99. La Colla L, Albertin A, La Colla G, Porta A, Aldegheri G, Di Candia D, Gigli F. Predictive performance of the ‘Minto’ remifentanil pharmacokinetic parameter set in morbidly obese patients ensuing from a new method for calculating lean body mass. Clin Pharmacokinet. 2010;49:131–9.

    Article  PubMed  Google Scholar 

  100. Mertens MJ, Engbers FH, Burm AG, Vuyk J. Predictive performance of computer-controlled infusion of remifentanil during propofol/remifentanil anaesthesia. Br J Anaesth. 2003;90:132–41.

    Article  CAS  PubMed  Google Scholar 

  101. Absalom AR, Lee M, Menon DK, Sharar SR, De Smet T, Halliday J, Ogden M, Corlett P, Honey GD, Fletcher PC. Predictive performance of the Domino, Hijazi, and Clements models during low-dose target-controlled ketamine infusions in healthy volunteers. Br J Anaesth. 2007;98:615–23.

    Article  CAS  PubMed  Google Scholar 

  102. Panchatsharam S. Callaghan M, Day R. Measured versus predicted blood propofol concentrations in children during scoliosis surgery. Anesth Analg: Sury MR; 2014.

    Google Scholar 

  103. Johnson KB, Kern SE, Hamber EA, McJames SW, Kohnstamm KM, Egan TD. Influence of hemorrhagic shock on remifentanil: a pharmacokinetic and pharmacodynamic analysis. Anesthesiology. 2001;94:322–32.

    Article  CAS  PubMed  Google Scholar 

  104. Masui K, Upton RN, Doufas AG, Coetzee JF, Kazama T, Mortier EP, Struys MM. The performance of compartmental and physiologically based recirculatory pharmacokinetic models for propofol: a comparison using bolus, continuous, and target-controlled infusion data. Anesth Analg. 2010;111:368–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew T. V. Chan MBBS, PhD, FANZCA, FHKCA, FHKAM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chan, M.T.V. (2017). Performance of Target-Controlled Infusion Systems. In: Absalom, A., Mason, K. (eds) Total Intravenous Anesthesia and Target Controlled Infusions. Springer, Cham. https://doi.org/10.1007/978-3-319-47609-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47609-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47607-0

  • Online ISBN: 978-3-319-47609-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics