Skip to main content

The Memory Labyrinth: Systems, Processes, and Boundaries

  • Chapter
  • First Online:
Total Intravenous Anesthesia and Target Controlled Infusions

Abstract

This topical quote was continued as “in the end that’s all there is.” In a sense this highlights how memory makes us uniquely human. As the human mind is the most complex creation in the universe, it stands to reason that memory embodies to a large extent this complexity. When memory fails in the end for some of us, a large portion of our being human also fails. In dementia some basic forms of memory do still exist and function, and functioning begins to rely more and more on stereotypical unconscious rather than recent autobiographical memories. During our whole lives unconscious memories allow us to function in an ever changing world by, for instance, jumping at a loud (potentially dangerous) noise, moving a piece of food to our mouth, or choosing a candy for unknown reasons from among dozens available. These unconscious memories seem to be implemented in the very core of our brains, and the question of whether consciousness can exist in the absence of memories is one of terminology. Certainly, conscious memories can be absent in the presence of consciousness, but a sine qua non of consciousness is the presence of working memory (memory of the here and now, even if the here and now is never remembered).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://en.wikipedia.org/wiki/PEnnsylvania_6-5000.

References

  1. Tulving E. Multiple memory systems and consciousness. Hum Neurobiol. 1987;6(2):67–80.

    CAS  PubMed  Google Scholar 

  2. Tulving E, Schacter DL. Priming and human memory systems. Science. 1990;247(4940):301–6.

    Article  CAS  PubMed  Google Scholar 

  3. Tulving E. Memory systems and the brain. Clin Neuropharmacol. 1992;15 Suppl 1 Pt A:327A–8A.

    Google Scholar 

  4. Zola-Morgan SM, Squire LR. The primate hippocampal formation: evidence for a time-limited role in memory storage. Science. 1990;250(4978):288–90.

    Article  CAS  PubMed  Google Scholar 

  5. Squire LR, Zola-Morgan S. The medial temporal lobe memory system. Science. 1991;253(5026):1380–6.

    Article  CAS  PubMed  Google Scholar 

  6. Zola-Morgan S, Squire LR. Neuroanatomy of memory. Annu Rev Neurosci. 1993;16:547–63.

    Article  CAS  PubMed  Google Scholar 

  7. Cooper SJ, Donald O. Hebb’s synapse and learning rule: a history and commentary. Neurosci Biobehav Rev. 2005;28(8):851–74.

    Article  PubMed  Google Scholar 

  8. Hebb DO. The organization of behavior; a neuropsychological theory. New York: Wiley; 1949. p. xix, 335.

    Google Scholar 

  9. McGaugh JL. Memory—a century of consolidation. Science. 2000;287(5451):248–51.

    Article  CAS  PubMed  Google Scholar 

  10. Rudoy JD, et al. Strengthening individual memories by reactivating them during sleep. Science. 2009;326(5956):1079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gais S, et al. Sleep transforms the cerebral trace of declarative memories. Proc Natl Acad Sci. 2007;104(47):18778–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Axmacher N, Haupt S, Fernandez G, Elger CE, Fell J. The role of sleep in declarative memory consolidation: direct evidence by intracranial EEG. Cereb Cortex. 2008;18(3):500–7.

    Article  PubMed  Google Scholar 

  13. Hui K, Fisher CE. The ethics of molecular memory modification. J Med Ethics. 2015;41(7):515–20.

    Article  PubMed  Google Scholar 

  14. Hongpaisan J, Alkon DL. A structural basis for enhancement of long-term associative memory in single dendritic spines regulated by PKC. Proc Natl Acad Sci U S A. 2007;104(49):19571–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Voss JL, Paller KA. Bridging divergent neural models of recognition memory: introduction to the special issue and commentary on key issues. Hippocampus. 2010;20(11):1171–7.

    Article  PubMed  Google Scholar 

  16. Elfman KW, Parks CM, Yonelinas AP. Testing a neurocomputational model of recollection, familiarity, and source recognition. J Exp Psychol Learn Mem Cogn. 2008;34(4):752–68.

    Article  PubMed  Google Scholar 

  17. Cohen NJ, Squire LR. Preserved learning and retention of pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. Science. 1980;210(4466):207–10.

    Article  CAS  PubMed  Google Scholar 

  18. Heindel WC, et al. Neuropsychological evidence for multiple implicit memory systems: a comparison of Alzheimer’s, Huntington’s, and Parkinson’s disease patients. J Neurosci. 1989;9(2):582–7.

    CAS  PubMed  Google Scholar 

  19. Shallice T, Warrington EK. Independent functioning of verbal memory stores: a neuropsychological study. Q J Exp Psychol. 1970;22(2):261–73.

    Article  CAS  PubMed  Google Scholar 

  20. Baddeley AD, Warrington EK. Amnesia and the distinction between long- and short-term memory. J Verbal Learn Verbal Behav. 1970;9:176–89.

    Article  Google Scholar 

  21. Baddeley A. The concept of episodic memory. Philos Trans R Soc Lond B Biol Sci. 2001;356(1413):1345–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Atkinson RC, Shiffrin RM. The control of short-term memory. Sci Am. 1971;225(2):82–90.

    Article  CAS  PubMed  Google Scholar 

  23. Melton AW. Memory. Science. 1963;140(3562):82–6.

    Article  CAS  PubMed  Google Scholar 

  24. Peterson LR, Peterson MJ. Short-term retention of individual verbal items. J Exp Psychol. 1959;58:193–8.

    Article  CAS  PubMed  Google Scholar 

  25. Brown J. Some tests of the decay theory of immediate memory. Q J Exp Psychol. 1958;10:12–21.

    Article  Google Scholar 

  26. Talmi D, et al. Neuroimaging the serial position curve. A test of single-store versus dual-store models. Psychol Sci. 2005;16(9):716–23.

    Article  PubMed  Google Scholar 

  27. Howard MW, Kahana MJ. A distributed representation of temporal context. J Math Psychol. 2002;46:269.

    Article  Google Scholar 

  28. Baddeley A. Working memory. In: Gazzaniga MS, editor. The cognitive neurosciences. Cambridge: MIT Press; 1995. p. 755–64.

    Google Scholar 

  29. Lisman JE, Jensen O. The theta-gamma neural code. Neuron. 2013;77(6):1002–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lisman JE, Idiart MA. Storage of 7 +/− 2 short-term memories in oscillatory subcycles. Science. 1995;267(5203):1512–5.

    Article  CAS  PubMed  Google Scholar 

  31. Pandit JJ. Acceptably aware during general anaesthesia: ‘dysanaesthesia’—the uncoupling of perception from sensory inputs. Conscious Cogn. 2014;27:194–212.

    Article  PubMed  Google Scholar 

  32. Baars BJ, Franklin S. How conscious experience and working memory interact. Trends Cogn Sci. 2003;7(4):166–72.

    Article  PubMed  Google Scholar 

  33. Squire LR, Knowlton B, Musen G. The structure and organization of memory. Annu Rev Psychol. 1993;44:453–95.

    Article  CAS  PubMed  Google Scholar 

  34. Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957;20:11–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hebb DO, Penfield W. Human behavior after extensive bilateral removal from the frontal lobes. Arch Neurol Psychiatry. 1940;44(2):421–38.

    Article  Google Scholar 

  36. Jobst BC, Cascino GD. Resective epilepsy surgery for drug-resistant focal epilepsy: a review. JAMA. 2015;313(3):285–93.

    Article  PubMed  Google Scholar 

  37. Skirrow C, et al. Temporal lobe surgery in childhood and neuroanatomical predictors of long-term declarative memory outcome. Brain. 2014;138:80–93.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zola-Morgan S, Squire LR, Amaral DG. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci. 1986;6(10):2950–67.

    CAS  PubMed  Google Scholar 

  39. Eichenbaum H. The hippocampus and mechanisms of declarative memory. Behav Brain Res. 1999;103(2):123–33.

    Article  CAS  PubMed  Google Scholar 

  40. Jacoby LL. Invariance in automatic influences of memory: toward a user’s guide for the process-dissociation procedure. J Exp Psychol Learn Mem Cogn. 1998;24(1):3–26.

    Article  CAS  PubMed  Google Scholar 

  41. Winters BD, Saksida LM, Bussey TJ. Object recognition memory: neurobiological mechanisms of encoding, consolidation and retrieval. Neurosci Biobehav Rev. 2008;32(5):1055–70.

    Article  PubMed  Google Scholar 

  42. Smith CN, et al. When recognition memory is independent of hippocampal function. Proc Natl Acad Sci. 2014;111(27):9935–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tulving E. Episodic memory and common sense: how far apart? Philos Trans R Soc Lond B Biol Sci. 2001;356(1413):1505–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gelbard-Sagiv H, et al. Internally generated reactivation of single neurons in human hippocampus during free recall. Science. 2008;322(5898):96–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tulving E. Episodic memory: from mind to brain. Annu Rev Psychol. 2002;53:1–25.

    Article  PubMed  Google Scholar 

  46. Clayton NS, Dickinson A. Episodic-like memory during cache recovery by scrub jays. Nature. 1998;395(6699):272–4.

    Article  CAS  PubMed  Google Scholar 

  47. Fortin NJ, Wright SP, Eichenbaum H. Recollection-like memory retrieval in rats is dependent on the hippocampus. Nature. 2004;431(7005):188–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ergorul C, Eichenbaum H. The hippocampus and memory for “what,” “where,” and “when”. Learn Mem. 2004;11(4):397–405.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shrager Y, et al. Spatial memory and the human hippocampus. Proc Natl Acad Sci U S A. 2007;104(8):2961–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pastalkova E, et al. Storage of spatial information by the maintenance mechanism of LTP. Science. 2006;313(5790):1141–4.

    Article  CAS  PubMed  Google Scholar 

  51. Broadbent NJ, Squire LR, Clark RE. Spatial memory, recognition memory, and the hippocampus. Proc Natl Acad Sci U S A. 2004;101:14515–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Poucet B, Save E, Lenck-Santini PP. Sensory and memory properties of hippocampal place cells. Rev Neurosci. 2000;11(2–3):95–111.

    CAS  PubMed  Google Scholar 

  53. Alme CB, et al. Place cells in the hippocampus: eleven maps for eleven rooms. Proc Natl Acad Sci U S A. 2014;111:18428–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kahana MJ, et al. Human theta oscillations exhibit task dependence during virtual maze navigation. Nature. 1999;399(6738):781–4.

    Article  CAS  PubMed  Google Scholar 

  55. Squire LR. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev. 1992;99(2):195–231.

    Article  CAS  PubMed  Google Scholar 

  56. Saksida LM. Neuroscience. Remembering outside the box. Science. 2009;325(5936):40–1.

    Article  CAS  PubMed  Google Scholar 

  57. Windhorst C. The slave model of autobiographical memory. Cogn Process. 2005;6(4):253–65.

    Article  PubMed  Google Scholar 

  58. Sanders RD, et al. Unresponsiveness not equal unconsciousness. Anesthesiology. 2012;116(4):946–59.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mashour GA. Integrating the science of consciousness and anesthesia. Anesth Analg. 2006;103(4):975–82.

    Article  PubMed  Google Scholar 

  60. Pandit JJ. Isolated forearm—or isolated brain? Interpreting responses during anaesthesia—or ‘dysanaesthesia’. Anaesthesia. 2013;68(10):995–1000.

    Article  CAS  PubMed  Google Scholar 

  61. Wixted JT. The psychology and neuroscience of forgetting. Annu Rev Psychol. 2004;55:235–69.

    Article  PubMed  Google Scholar 

  62. Parker ES, Cahill L, McGaugh JL. A case of unusual autobiographical remembering. Neurocase. 2006;12(1):35–49.

    Article  PubMed  Google Scholar 

  63. Lynch MA. Long-term potentiation and memory. Physiol Rev. 2004;84(1):87–136.

    Article  CAS  PubMed  Google Scholar 

  64. Hinrichs JV, Ghoneim MM, Mewaldt SP. Diazepam and memory: retrograde facilitation produced by interference reduction. Psychopharmacology (Berl). 1984;84(2):158–62.

    Article  CAS  Google Scholar 

  65. Medved MI, Hirst W. Islands of memory: autobiographical remembering in amnestics. Memory. 2006;14(3):276–88.

    Article  PubMed  Google Scholar 

  66. Gilboa A. Autobiographical and episodic memory—one and the same? Evidence from prefrontal activation in neuroimaging studies. Neuropsychologia. 2004;42(10):1336–49.

    Article  PubMed  Google Scholar 

  67. Burianova H, Grady CL. Common and unique neural activations in autobiographical, episodic, and semantic retrieval. J Cogn Neurosci. 2007;19(9):1520–34.

    Article  PubMed  Google Scholar 

  68. Fischer S, et al. Motor memory consolidation in sleep shapes more effective neuronal representations. J Neurosci. 2005;25(49):11248–55.

    Article  CAS  PubMed  Google Scholar 

  69. Brashers-Krug T, Shadmehr R, Bizzi E. Consolidation in human motor memory. Nature. 1996;382(6588):252–5.

    Article  CAS  PubMed  Google Scholar 

  70. Wixted JT. On common ground: Jost’s (1897) law of forgetting and Ribot’s (1881) law of retrograde amnesia. Psychol Rev. 2004;111(4):864–79.

    Article  PubMed  Google Scholar 

  71. Wixted JT, Carpenter SK. The Wickelgren power law and the Ebbinghaus savings function. Psychol Sci. 2007;18(2):133–4.

    Article  PubMed  Google Scholar 

  72. Pryor KO, et al. Visual P2-N2 complex and arousal at the time of encoding predict the time domain characteristics of amnesia for multiple intravenous anesthetic drugs in humans. Anesthesiology. 2010;113(2):313–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kapur S, et al. Neuroanatomical correlates of encoding in episodic memory: levels of processing effect. Proc Natl Acad Sci U S A. 1994;91(6):2008–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Craik FIM, Lockhart RS. Levels of processing—framework for memory research. J Verbal Learn Verbal Behav. 1972;11(6):671–84.

    Article  Google Scholar 

  75. Dehaene S, et al. Imaging unconscious semantic priming. Nature. 1998;395(6702):597–600.

    Article  CAS  PubMed  Google Scholar 

  76. Elfman KW, Yonelinas AP. Recollection and familiarity exhibit dissociable similarity gradients: a test of the complementary learning systems model. J Cogn Neurosci. 2014;1–17.

    Google Scholar 

  77. Murray MM, Foxe JJ, Wylie GR. The brain uses single-trial multisensory memories to discriminate without awareness. Neuroimage. 2005;27(2):473–8.

    Article  PubMed  Google Scholar 

  78. Busse L, et al. The spread of attention across modalities and space in a multisensory object. Proc Natl Acad Sci U S A. 2005;102(51):18751–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shtyrov Y, Hauk O, Pulvermuller F. Distributed neuronal networks for encoding category-specific semantic information: the mismatch negativity to action words. Eur J Neurosci. 2004;19(4):1083–92.

    Article  PubMed  Google Scholar 

  80. Picton TW, et al. Mismatch negativity: different water in the same river. Audiol Neurootol. 2000;5(3–4):111–39.

    Article  CAS  PubMed  Google Scholar 

  81. Näätänen R. Attention and brain function. Hillsdale, NJ: L. Erlbaum; 1992. p. 494.

    Google Scholar 

  82. Pryor KO, et al. Effect of propofol on the medial temporal lobe emotional memory system: a functional magnetic resonance imaging study in human subjects. Br J Anaesth. 2015;115 Suppl 1:i104–13.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pryor KO, et al. Enhanced visual memory effect for negative versus positive emotional content is potentiated at sub-anaesthetic concentrations of thiopental. Br J Anaesth. 2004;93(3):348–55.

    Article  CAS  PubMed  Google Scholar 

  84. Henson RN, Gagnepain P. Predictive, interactive multiple memory systems. Hippocampus. 2010;20(11):1315–26.

    Article  PubMed  Google Scholar 

  85. Shimamura AP. Hierarchical relational binding in the medial temporal lobe: the strong get stronger. Hippocampus. 2010;20(11):1206–16.

    Article  PubMed  Google Scholar 

  86. Cowell RA, Bussey TJ, Saksida LM. Components of recognition memory: dissociable cognitive processes or just differences in representational complexity? Hippocampus. 2010;20(11):1245–62.

    Article  PubMed  Google Scholar 

  87. Eichenbaum H. Time cells in the hippocampus: a new dimension for mapping memories. Nat Rev Neurosci. 2014;15(11):732–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rose M, Haider H, Buchel C. The emergence of explicit memory during learning. Cereb Cortex. 2010;20(12):2787–97.

    Article  PubMed  Google Scholar 

  89. Veselis RA, et al. Propofol and midazolam inhibit conscious memory processes very soon after encoding: an event-related potential study of familiarity and recollection in volunteers. Anesthesiology. 2009;110(2):295–312.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Rugg MD, Yonelinas AP. Human recognition memory: a cognitive neuroscience perspective. Trends Cogn Sci. 2003;7(7):313–9.

    Article  PubMed  Google Scholar 

  91. Wais PE, Mickes L, Wixted JT. Remember/know judgments probe degrees of recollection. J Cogn Neurosci. 2008;20(3):400–5.

    Article  PubMed  Google Scholar 

  92. Stratmann G, et al. Effect of general anesthesia in infancy on long-term recognition memory in humans and rats. Neuropsychopharmacology. 2014;39(10):2275–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Eichenbaum H. Remember that? Or does it just seem familiar? A sophisticated test for assessing memory in humans and animals reveals a specific cognitive impairment following general anesthesia in infancy. Neuropsychopharmacology. 2014;39(10):2273–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hemmings HC, Jevtovic-Todorovic V. Special issue on anaesthetic neurotoxicity and neuroplasticity. Br J Anaesth. 2013;110 Suppl 1:i1–2.

    Article  PubMed  Google Scholar 

  95. Yonelinas AP. Receiver-operating characteristics in recognition memory: evidence for a dual-process model. J Exp Psychol Learn Mem Cogn. 1994;20(6):1341–54.

    Article  CAS  PubMed  Google Scholar 

  96. Yonelinas AP, et al. Signal-detection, threshold, and dual-process models of recognition memory: ROCs and conscious recollection. Conscious Cogn. 1996;5(4):418–41.

    Article  CAS  PubMed  Google Scholar 

  97. Wixted JT. Dual-process theory and signal-detection theory of recognition memory. Psychol Rev. 2007;114(1):152–76.

    Article  PubMed  Google Scholar 

  98. Sauvage MM, et al. Recognition memory: opposite effects of hippocampal damage on recollection and familiarity. Nat Neurosci. 2008;11(1):16–8.

    Article  CAS  PubMed  Google Scholar 

  99. Wais PE, et al. The hippocampus supports both the recollection and the familiarity components of recognition memory. Neuron. 2006;49(3):459–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yonelinas AP, et al. Recollection and familiarity deficits in amnesia: convergence of remember-know, process dissociation, and receiver operating characteristic data. Neuropsychology. 1998;12(3):323–39.

    Article  CAS  PubMed  Google Scholar 

  101. Duzel E, et al. Brain activity evidence for recognition without recollection after early hippocampal damage. Proc Natl Acad Sci U S A. 2001;98(14):8101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kahn I, Davachi L, Wagner AD. Functional-neuroanatomic correlates of recollection: implications for models of recognition memory. J Neurosci. 2004;24(17):4172–80.

    Article  CAS  PubMed  Google Scholar 

  103. Yonelinas AP, et al. Separating the brain regions involved in recollection and familiarity in recognition memory. J Neurosci. 2005;25(11):3002–8.

    Article  CAS  PubMed  Google Scholar 

  104. Curran T, et al. Combined pharmacological and electrophysiological dissociation of familiarity and recollection. J Neurosci. 2006;26(7):1979–85.

    Article  CAS  PubMed  Google Scholar 

  105. Daselaar SM, Fleck MS, Cabeza R. Triple dissociation in the medial temporal lobes: recollection, familiarity, and novelty. J Neurophysiol. 2006;96(4):1902–11.

    Article  CAS  PubMed  Google Scholar 

  106. Curran T, Cleary AM. Using ERPs to dissociate recollection from familiarity in picture recognition. Brain Res Cogn Brain Res. 2003;15(2):191–205.

    Article  PubMed  Google Scholar 

  107. Opitz B, Cornell S. Contribution of familiarity and recollection to associative recognition memory: insights from event-related potentials. J Cogn Neurosci. 2006;18(9):1595–605.

    Article  PubMed  Google Scholar 

  108. MacKenzie G, Donaldson DI. Dissociating recollection from familiarity: electrophysiological evidence that familiarity for faces is associated with a posterior old/new effect. Neuroimage. 2007;36(2):454–63.

    Article  PubMed  Google Scholar 

  109. Warren-Gash C, Zeman A. Is there anything distinctive about epileptic deja vu? J Neurol Neurosurg Psychiatry. 2014;85(2):143–7.

    Article  PubMed  Google Scholar 

  110. O’Connor AR, Moulin CJ. Deja vu experiences in healthy subjects are unrelated to laboratory tests of recollection and familiarity for word stimuli. Front Psychol. 2013;4:881.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Malecki M. Familiarity transfer as an explanation of the deja vu effect. Psychol Rep. 2015;116(3):955–82.

    Article  CAS  PubMed  Google Scholar 

  112. Bartolomei F, et al. Cortical stimulation study of the role of rhinal cortex in deja vu and reminiscence of memories. Neurology. 2004;63(5):858–64.

    Article  CAS  PubMed  Google Scholar 

  113. Fuentealba P, Steriade M. The reticular nucleus revisited: intrinsic and network properties of a thalamic pacemaker. Prog Neurobiol. 2005;75(2):125–41.

    Article  CAS  PubMed  Google Scholar 

  114. Rempel-Clower NL, et al. Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J Neurosci. 1996;16(16):5233–55.

    CAS  PubMed  Google Scholar 

  115. Corkin S. What’s new with the amnesic patient H.M.? Nat Rev Neurosci. 2002;3(2):153–60.

    Article  CAS  PubMed  Google Scholar 

  116. Varela F, et al. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci. 2001;2(4):229–39.

    Article  CAS  PubMed  Google Scholar 

  117. Dehaene S, et al. Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn Sci. 2006;10(5):204–11.

    Article  PubMed  Google Scholar 

  118. Buzsaki G. Theta oscillations in the hippocampus. Neuron. 2002;33(3):325–40.

    Article  CAS  PubMed  Google Scholar 

  119. Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304(5679):1926–9.

    Article  CAS  PubMed  Google Scholar 

  120. Fell J, et al. Rhinal-hippocampal theta coherence during declarative memory formation: interaction with gamma synchronization? Eur J Neurosci. 2003;17(5):1082–8.

    Article  PubMed  Google Scholar 

  121. Mormann F, et al. Phase/amplitude reset and theta-gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus. 2005;15(7):890–900.

    Article  PubMed  Google Scholar 

  122. Canolty RT, et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006;313(5793):1626–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Osipova D, et al. Theta and gamma oscillations predict encoding and retrieval of declarative memory. J Neurosci. 2006;26(28):7523–31.

    Article  CAS  PubMed  Google Scholar 

  124. Nyhus E, Curran T. Functional role of gamma and theta oscillations in episodic memory. Neurosci Biobehav Rev. 2010;34(7):1023–35.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Lega B, et al. Slow-theta-to-gamma phase-amplitude coupling in human hippocampus supports the formation of new episodic memories. Cereb Cortex. 2014;26:268–78.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Roux F, Uhlhaas PJ. Working memory and neural oscillations: alpha-gamma versus theta-gamma codes for distinct WM information? Trends Cogn Sci. 2014;18(1):16–25.

    Article  PubMed  Google Scholar 

  127. Perouansky M, et al. Slowing of the hippocampal theta rhythm correlates with anesthetic-induced amnesia. Anesthesiology. 2010;113(6):1299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. La Vaque TJ. The history of EEG Hans Berger. J Neurother. 1999;3(2):1–9.

    Article  Google Scholar 

  129. Knoblauch V, et al. Homeostatic control of slow-wave and spindle frequency activity during human sleep: effect of differential sleep pressure and brain topography. Cereb Cortex. 2002;12(10):1092–100.

    Article  CAS  PubMed  Google Scholar 

  130. Baker PM, et al. Disruption of coherent oscillations in inhibitory networks with anesthetics: role of GABA(A) receptor desensitization. J Neurophysiol. 2002;88(5):2821–33.

    Article  CAS  PubMed  Google Scholar 

  131. Caraiscos VB, et al. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A. 2004;101(10):3662–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cheng VY, et al. {alpha}5GABAA receptors mediate the amnestic but not sedative-hypnotic effects of the general anesthetic etomidate. J Neurosci. 2006;26(14):3713–20.

    Article  CAS  PubMed  Google Scholar 

  133. Saab BJ, et al. Short-term memory impairment after isoflurane in mice is prevented by the alpha5 gamma-aminobutyric acid type A receptor inverse agonist L-655,708. Anesthesiology. 2010;113(5):1061–71.

    Article  CAS  PubMed  Google Scholar 

  134. Lecker I, et al. Potentiation of GABAA receptor activity by volatile anaesthetics is reduced by α5GABAA receptor-preferring inverse agonists. Br J Anaesth. 2013;110 Suppl 1:i73–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Banks MI, White JA, Pearce RA. Interactions between distinct GABA(A) circuits in hippocampus. Neuron. 2000;25(2):449–57.

    Article  CAS  PubMed  Google Scholar 

  136. White JA, et al. Networks of interneurons with fast and slow gamma-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm. Proc Natl Acad Sci U S A. 2000;97(14):8128–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Benkwitz C, Banks MI, Pearce RA. Influence of GABAA receptor gamma2 splice variants on receptor kinetics and isoflurane modulation. Anesthesiology. 2004;101(4):924–36.

    Article  CAS  PubMed  Google Scholar 

  138. Verbny YI, Merriam EB, Banks MI. Modulation of gamma-aminobutyric acid type A receptor-mediated spontaneous inhibitory postsynaptic currents in auditory cortex by midazolam and isoflurane. Anesthesiology. 2005;102(5):962–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Burlingame RH, et al. Subhypnotic doses of isoflurane impair auditory discrimination in rats. Anesthesiology. 2007;106(4):754–62.

    Article  CAS  PubMed  Google Scholar 

  140. Baddeley AD. Working memory. Science. 1992;255:556–9.

    Article  CAS  PubMed  Google Scholar 

  141. Baddeley A. The fractionation of working memory. Proc Natl Acad Sci U S A. 1996;93(24):13468–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Blumenfeld RS, Ranganath C. Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization. J Neurosci. 2006;26(3):916–25.

    Article  CAS  PubMed  Google Scholar 

  143. Ranganath C, Cohen MX, Brozinsky CJ. Working memory maintenance contributes to long-term memory formation: neural and behavioral evidence. J Cogn Neurosci. 2005;17(7):994–1010.

    Article  PubMed  Google Scholar 

  144. Wager TD, Smith EE. Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci. 2003;3(4):255–74.

    Article  PubMed  Google Scholar 

  145. Muller NG, Machado L, Knight RT. Contributions of subregions of the prefrontal cortex to working memory: evidence from brain lesions in humans. J Cogn Neurosci. 2002;14(5):673–86.

    Article  PubMed  Google Scholar 

  146. Ward LM. Synchronous neural oscillations and cognitive processes. Trends Cogn Sci. 2003;7(12):553–9.

    Article  PubMed  Google Scholar 

  147. Jensen O, Lisman JE. Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends Neurosci. 2005;28(2):67–72.

    Article  CAS  PubMed  Google Scholar 

  148. Chakrabarti BK, Basu A. Neural network modeling. Prog Brain Res. 2008;168:155–68.

    Article  PubMed  Google Scholar 

  149. Veselis RA, Reinsel R, Wronski M. Analytical methods to differentiate similar electroencephalographic spectra: neural network and discriminant analysis. J Clin Monit. 1993;9(4):257–67.

    Article  CAS  PubMed  Google Scholar 

  150. Veselis RA, et al. Use of neural network analysis to classify electroencephalographic patterns against depth of midazolam sedation in intensive care unit patients. J Clin Monit. 1991;7(3):259–67.

    Article  CAS  PubMed  Google Scholar 

  151. Kloppel B. Application of neural networks for EEG analysis. Considerations and first results. Neuropsychobiology. 1994;29(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  152. Kloppel B. Neural networks as a new method for EEG analysis. A basic introduction. Neuropsychobiology. 1994;29(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  153. Kasabov NK. NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw. 2014;52:62–76.

    Article  PubMed  Google Scholar 

  154. Gulyas A, et al. Navigable networks as Nash equilibria of navigation games. Nat Commun. 2015;6:7651.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Duvernoy HM, Bourgouin P. The human hippocampus: functional anatomy, vascularization and serial sections with MRI. 2nd completely rev. and expanded ed. Berlin and New York: Springer; 1998. p. viii, 213.

    Google Scholar 

  156. Lisman JE. Hippocampus, II: memory connections. Am J Psychiatry. 2005;162(2):239.

    Article  PubMed  Google Scholar 

  157. Wixted JT, et al. Sparse and distributed coding of episodic memory in neurons of the human hippocampus. Proc Natl Acad Sci U S A. 2014;111(26):9621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rolls ET. A computational theory of episodic memory formation in the hippocampus. Behav Brain Res. 2010;215(2):180–96.

    Article  PubMed  Google Scholar 

  159. Elfman KW, Aly M, Yonelinas AP. Neurocomputational account of memory and perception: thresholded and graded signals in the hippocampus. Hippocampus. 2014;24(12):1672–86.

    Article  PubMed  Google Scholar 

  160. O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34(1):171–5.

    Article  PubMed  Google Scholar 

  161. O’Keefe J. Hippocampus, theta, and spatial memory. Curr Opin Neurobiol. 1993;3(6):917–24.

    Article  PubMed  Google Scholar 

  162. Samsonovich AV, Ascoli GA. A simple neural network model of the hippocampus suggesting its pathfinding role in episodic memory retrieval. Learn Mem. 2005;12:193–208.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Shanks DR, et al. Priming intelligent behavior: an elusive phenomenon. PLoS One. 2013;8(4), e56515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Newell BR, Shanks DR. Unconscious influences on decision making: a critical review. Behav Brain Sci. 2014;37(1):1–19.

    Article  PubMed  Google Scholar 

  165. Bullock A. The secret sales pitch: an overview of subliminal advertising. San Jose, CA: Norwich Publishers; 2004. 272 p.

    Google Scholar 

  166. Ioannidis JP. Why most published research findings are false. PLoS Med. 2005;2(8), e124.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Johnson VE. Revised standards for statistical evidence. Proc Natl Acad Sci U S A. 2013;110(48):19313–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Avidan MS, Wildes TS. Power of negative thinking. Br J Anaesth. 2015;114(1):3–5.

    Article  CAS  PubMed  Google Scholar 

  169. Yong E. Replication studies: bad copy. Nature. 2012;485(7398):298–300.

    Article  PubMed  Google Scholar 

  170. Lequeux P-Y, Hecquet F, Bredas P. Does anesthetic regimen influence implicit memory during general anesthesia? Anesth Analg. 2014;119(5):1174–9. doi:10.1213/ANE.0000000000000162.

    Article  CAS  PubMed  Google Scholar 

  171. Hadzidiakos D, et al. Analysis of memory formation during general anesthesia (propofol/remifentanil) for elective surgery using the process-dissociation procedure. Anesthesiology. 2009;111(2):293–301.

    Article  CAS  PubMed  Google Scholar 

  172. Nadel L, Hardt O. Update on memory systems and processes. Neuropsychopharmacology. 2011;36(1):251–73.

    Article  PubMed  Google Scholar 

  173. Berns GS, Cohen JD, Mintun MA. Brain regions responsive to novelty in the absence of awareness. Science. 1997;276(5316):1272–5.

    Article  CAS  PubMed  Google Scholar 

  174. Andrade J. Learning during anaesthesia: a review. Br J Psychol. 1995;86(Pt 4):479–506.

    Article  PubMed  Google Scholar 

  175. Ghoneim MM, Block RI. Learning and memory during general anesthesia. Anesthesiology. 1997;87(2):387–410.

    Article  CAS  PubMed  Google Scholar 

  176. Genzel L, et al. Light sleep versus slow wave sleep in memory consolidation: a question of global versus local processes? Trends Neurosci. 2014;37(1):10–9.

    Article  CAS  PubMed  Google Scholar 

  177. Marshall L, Born J. The contribution of sleep to hippocampus-dependent memory consolidation. Trends Cogn Sci. 2007;11(10):442–50.

    Article  PubMed  Google Scholar 

  178. Gais S, Born J. Declarative memory consolidation: mechanisms acting during human sleep. Learn Mem. 2004;11(6):679–85.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Uncapher MR, Rugg MD. Effects of divided attention on fMRI correlates of memory encoding. J Cogn Neurosci. 2005;17(12):1923–35.

    Article  PubMed  Google Scholar 

  180. Naveh-Benjamin M, Guez J, Marom M. The effects of divided attention at encoding on item and associative memory. Mem Cognit. 2003;31(7):1021–35.

    Article  PubMed  Google Scholar 

  181. Iidaka T, et al. The effect of divided attention on encoding and retrieval in episodic memory revealed by positron emission tomography. J Cogn Neurosci. 2000;12(2):267–80.

    Article  CAS  PubMed  Google Scholar 

  182. Anderson ND, et al. The effects of divided attention on encoding- and retrieval-related brain activity: a PET study of younger and older adults. J Cogn Neurosci. 2000;12(5):775–92.

    Article  CAS  PubMed  Google Scholar 

  183. Coull JT. Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog Neurobiol. 1998;55(4):343–61.

    Article  CAS  PubMed  Google Scholar 

  184. Gardiner JM, Parkin AJ. Attention and recollective experience in recognition memory. Mem Cognit. 1990;18(6):579–83.

    Article  CAS  PubMed  Google Scholar 

  185. Veselis RA, et al. Information loss over time defines the memory defect of propofol: a comparative response with thiopental and dexmedetomidine. Anesthesiology. 2004;101(4):831–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Nelson LE, et al. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology. 2003;98(2):428–36.

    Article  CAS  PubMed  Google Scholar 

  187. Nelson LE, et al. The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci. 2002;5(10):979–84.

    Article  CAS  PubMed  Google Scholar 

  188. Gelegen C, et al. Staying awake—a genetic region that hinders α2 adrenergic receptor agonist-induced sleep. Eur J Neurosci. 2014;40:2311–9.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci. 2008;9(5):370–86.

    Article  CAS  PubMed  Google Scholar 

  190. Friedman EB, et al. A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia. PLoS One. 2010;5(7), e11903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Kelz MB, et al. An essential role for orexins in emergence from general anesthesia. Proc Natl Acad Sci U S A. 2008;105(4):1309–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Veselis RA, et al. The comparative amnestic effects of midazolam, propofol, thiopental, and fentanyl at equisedative concentrations. Anesthesiology. 1997;87(4):749–64.

    Article  CAS  PubMed  Google Scholar 

  193. Ghoneim MM, Hinrichs JV. Drugs, memory and sedation: specificity of effects. Anesthesiology. 1997;87(Oct):734–6.

    Article  CAS  PubMed  Google Scholar 

  194. Schwartz RH, Milteer R, LeBeau MA. Drug-facilitated sexual assault (‘date rape’). South Med J. 2000;93(6):558–61.

    Article  CAS  PubMed  Google Scholar 

  195. Kim M, Kim J, Kwon JS. The effect of immediate and delayed word repetition on event-related potential in a continuous recognition task. Brain Res Cogn Brain Res. 2001;11(3):387–96.

    Article  CAS  PubMed  Google Scholar 

  196. Friedman D. ERPs during continuous recognition memory for words. Biol Psychol. 1990;30:61–87.

    Article  CAS  PubMed  Google Scholar 

  197. Ghoneim MM, Block RI. Immediate peri-operative memory. Acta Anaesthesiol Scand. 2007;51(8):1054–61.

    Article  CAS  PubMed  Google Scholar 

  198. Fandakova Y, et al. Age differences in short-term memory binding are related to working memory performance across the lifespan. Psychol Aging. 2014;29(1):140–9.

    Article  PubMed  Google Scholar 

  199. Datta D, Arion D, Lewis DA. Developmental expression patterns of GABAA receptor subunits in layer 3 and 5 pyramidal cells of monkey prefrontal cortex. Cereb Cortex. 2015;25(8):2295–305.

    Article  PubMed  Google Scholar 

  200. Mashour GA, Avidan MS. Intraoperative awareness: controversies and non-controversies. Br J Anaesth. 2015;115 Suppl 1:i20–6.

    Article  PubMed  Google Scholar 

  201. Glannon W. Anaesthesia, amnesia and harm. J Med Ethics. 2014;40:651–7.

    Article  PubMed  Google Scholar 

  202. Pandit JJ, Russell IF, Wang M. Interpretations of responses using the isolated forearm technique in general anaesthesia: a debate. Br J Anaesth. 2015;115 Suppl 1:i32–45.

    Article  PubMed  Google Scholar 

  203. Kent CD, et al. Psychological impact of unexpected explicit recall of events occurring during surgery performed under sedation, regional anaesthesia, and general anaesthesia: data from the Anesthesia Awareness Registry. Br J Anaesth. 2013;110(3):381–7.

    Article  CAS  PubMed  Google Scholar 

  204. Whitlock EL, et al. Psychological sequelae of surgery in a prospective cohort of patients from three intraoperative awareness prevention trials. Anesth Analg. 2015;120(1):87–95.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Samuelsson P, Brudin L, Sandin RH. Late psychological symptoms after awareness among consecutively included surgical patients. Anesthesiology. 2007;106(1):26–32.

    Article  PubMed  Google Scholar 

  206. Sandin R. Outcome after awareness with explicit recall. Acta Anaesthesiol Belg. 2006;57(4):429–32.

    CAS  PubMed  Google Scholar 

  207. Pollard RJ, et al. Intraoperative awareness in a regional medical system: a review of 3 years’ data. Anesthesiology. 2007;106(2):269–74.

    Article  PubMed  Google Scholar 

  208. Cook TM, et al. 5th National Audit Project (NAP5) on accidental awareness during general anaesthesia: patient experiences, human factors, sedation, consent, and medicolegal issues. Br J Anaesth. 2014;113(4):560–74.

    Article  CAS  PubMed  Google Scholar 

  209. Alkire MT, Nathan SV, McReynolds JR. Memory enhancing effect of low-dose sevoflurane does not occur in basolateral amygdala-lesioned rats. Anesthesiology. 2005;103(6):1167–73.

    Article  CAS  PubMed  Google Scholar 

  210. Starmer AJ, et al. Changes in medical errors after implementation of a handoff program. N Engl J Med. 2014;371(19):1803–12.

    Article  CAS  PubMed  Google Scholar 

  211. Colligan L, Brick D, Patterson ES. Changes in medical errors with a handoff program. N Engl J Med. 2015;372(5):490–1.

    Article  CAS  PubMed  Google Scholar 

  212. Cheek DB. Unconscious perception of meaningful sounds during surgical anesthesia as revealed under hypnosis. Am J Clin Hypn. 1959;1(3):101–13.

    Article  Google Scholar 

  213. Levinson BW. States of awareness during anaesthesia: preliminary communication. Br J Anaesth. 1965;37(7):544–6.

    Article  CAS  PubMed  Google Scholar 

  214. Lubke GH, et al. Dependence of explicit and implicit memory on hypnotic state in trauma patients. Anesthesiology. 1999;90(3):670–80.

    Article  CAS  PubMed  Google Scholar 

  215. Lubke GH, et al. Memory formation during general anesthesia for emergency cesarean sections. Anesthesiology. 2000;92(4):1029–34.

    Article  CAS  PubMed  Google Scholar 

  216. Kerssens C, et al. Memory function during propofol and alfentanil anesthesia: predictive value of individual differences. Anesthesiology. 2002;97(2):382–9.

    Article  CAS  PubMed  Google Scholar 

  217. Kerssens C, Gaither JR, Sebel PS. Preserved memory function during bispectral index-guided anesthesia with sevoflurane for major orthopedic surgery. Anesthesiology. 2009;111(3):518–24. doi:10.1097/ALN.0b013e3181b05f0b.

    Article  PubMed  Google Scholar 

  218. Kerssens C, Ouchi T, Sebel PS. No evidence of memory function during anesthesia with propofol or isoflurane with close control of hypnotic state. Anesthesiology. 2005;102(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  219. Deeprose C, et al. Unconscious learning during surgery with propofol anaesthesia. Br J Anaesth. 2004;92(2):171–7.

    Article  CAS  PubMed  Google Scholar 

  220. Deeprose C, et al. Unconscious auditory priming during surgery with propofol and nitrous oxide anaesthesia: a replication. Br J Anaesth. 2005;94(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  221. Franco A, Malhotra N, Simonovits G. Social science. Publication bias in the social sciences: unlocking the file drawer. Science. 2014;345(6203):1502–5.

    Article  CAS  PubMed  Google Scholar 

  222. Munte S, et al. Increased reading speed for stories presented during general anesthesia. Anesthesiology. 1999;90(3):662–9.

    Article  CAS  PubMed  Google Scholar 

  223. Jacoby LL. A process dissociation framework: separating automatic from intentional uses of memory. J Mem Lang. 1991;33(1):1–18.

    Google Scholar 

  224. Veselis RA. Memory formation during anaesthesia: plausibility of a neurophysiological basis. Br J Anaesth. 2015;115 Suppl 1:i13–9.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Mashour GA, Alkire MT. Consciousness, anesthesia, and the thalamocortical system. Anesthesiology. 2013;118(1):13–5. doi:10.1097/ALN.0b013e318277a9c6.

    Article  PubMed  Google Scholar 

  226. Mashour GA. Dreaming during anesthesia and sedation. Anesth Analg. 2011;112(5):1008–10.

    Article  PubMed  Google Scholar 

  227. DiFrancesco MW, et al. BOLD fMRI in infants under sedation: Comparing the impact of pentobarbital and propofol on auditory and language activation. J Magn Reson Imaging. 2013;38(5):1184–95.

    Article  PubMed  Google Scholar 

  228. Plourde G, et al. Attenuation of the 40-hertz auditory steady state response by propofol involves the cortical and subcortical generators. Anesthesiology. 2008;108(2):233–42.

    Article  CAS  PubMed  Google Scholar 

  229. Veselis R, et al. Auditory rCBF covariation with word rate during drug-induced sedation and unresponsiveness: a H2015 PET study. Brain Cogn. 2004;54(2):142–4.

    CAS  PubMed  Google Scholar 

  230. Heinke W, et al. Sequential effects of propofol on functional brain activation induced by auditory language processing: an event-related functional magnetic resonance imaging study. Br J Anaesth. 2004;92(5):641–50.

    Article  CAS  PubMed  Google Scholar 

  231. Gonano C, et al. Effect of earplugs on propofol requirement and awareness with recall during spinal anesthesia. Minerva Anestesiol. 2010;76(7):504–8.

    CAS  PubMed  Google Scholar 

  232. Liu X, et al. Differential effects of deep sedation with propofol on the specific and nonspecific thalamocortical systems: a functional magnetic resonance imaging study. Anesthesiology. 2013;118(1):59–69. doi:10.1097/ALN.0b013e318277a801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Hudetz AG. General anesthesia and human brain connectivity. Brain Connect. 2012;2(6):291–302.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Boveroux P, et al. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology. 2010;113(5):1038–53.

    Article  CAS  PubMed  Google Scholar 

  235. Lopez-Aranda MF, et al. Role of layer 6 of V2 visual cortex in object-recognition memory. Science. 2009;325(5936):87–9.

    Article  CAS  PubMed  Google Scholar 

  236. Chen X, et al. Encoding and retrieval of artificial visuoauditory memory traces in the auditory cortex requires the entorhinal cortex. J Neurosci. 2013;33(24):9963–74.

    Article  CAS  PubMed  Google Scholar 

  237. Baker R, et al. Altered activity in the central medial thalamus precedes changes in the neocortex during transitions into both sleep and propofol anesthesia. J Neurosci. 2014;34(40):13326–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. John ER, Prichep LS. The anesthetic cascade: a theory of how anesthesia suppresses consciousness. Anesthesiology. 2005;102(2):447–71.

    Article  PubMed  Google Scholar 

  239. John ER, et al. Invariant reversible qEEG effects of anesthetics. Conscious Cogn. 2001;10(2):165–83.

    Article  CAS  PubMed  Google Scholar 

  240. Liu X, et al. Propofol disrupts functional interactions between sensory and high-order processing of auditory verbal memory. Hum Brain Mapp. 2012;33(10):2487–98.

    Article  PubMed  Google Scholar 

  241. Hudetz AG, Pearce R. Suppressing the mind: anesthetic modulation of memory and consciousness. Contemporary clinical neuroscience. Totowa, NJ: Humana; 2010. p. x, 252.

    Google Scholar 

  242. Hudetz AG, Vizuete JA, Imas OA. Desflurane selectively suppresses long-latency cortical neuronal response to flash in the rat. Anesthesiology. 2009;111(2):231–9. doi:10.1097/ALN.0b013e3181ab671e.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science. 2008;322(5903):876–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Imas OA, et al. Isoflurane disrupts anterio-posterior phase synchronization of flash-induced field potentials in the rat. Neurosci Lett. 2006;402(3):216–21.

    Article  CAS  PubMed  Google Scholar 

  245. Blain-Moraes S, et al. Neurophysiological correlates of sevoflurane-induced unconsciousness. Anesthesiology. 2014;122:307–16.

    Article  CAS  Google Scholar 

  246. Lee U, et al. Dissociable network properties of anesthetic state transitions. Anesthesiology. 2011;114(4):872–81.

    Article  PubMed  Google Scholar 

  247. Monti MM, et al. Dynamic change of global and local information processing in propofol-induced loss and recovery of consciousness. PLoS Comput Biol. 2013;9(10), e1003271.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Sessler DI, et al. Hospital stay and mortality are increased in patients having a “triple low” of low blood pressure, low bispectral index, and low minimum alveolar concentration of volatile anesthesia. Anesthesiology. 2012;116(6):1195–203.

    Article  PubMed  Google Scholar 

  249. Myles PS. Untangling the triple low: causal inference in anesthesia research. Anesthesiology. 2014;121(1):1–3.

    Article  PubMed  Google Scholar 

  250. Kertai MD, White WD, Gan TJ. Cumulative duration of “triple low” state of low blood pressure, low bispectral index, and low minimum alveolar concentration of volatile anesthesia is not associated with increased mortality. Anesthesiology. 2014;121(1):18–28.

    Article  CAS  PubMed  Google Scholar 

  251. Monk TG, et al. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology. 2008;108(1):18–30.

    Article  PubMed  Google Scholar 

  252. Rappaport BA, et al. Anesthetic neurotoxicity—clinical implications of animal models. N Engl J Med. 2015;372(9):796–7.

    Article  CAS  PubMed  Google Scholar 

  253. Riker RR, et al. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301(5):489–99.

    Article  CAS  PubMed  Google Scholar 

  254. MacLaren R, et al. A randomized, double-blind pilot study of dexmedetomidine versus midazolam for intensive care unit sedation: patient recall of their experiences and short-term psychological outcomes. J Intensive Care Med. 2015;30(3):167–75.

    Article  PubMed  Google Scholar 

  255. Hudetz JA, et al. Ketamine attenuates delirium after cardiac surgery with cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2009;23(5):651–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Veselis MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Veselis, R.A. (2017). The Memory Labyrinth: Systems, Processes, and Boundaries. In: Absalom, A., Mason, K. (eds) Total Intravenous Anesthesia and Target Controlled Infusions. Springer, Cham. https://doi.org/10.1007/978-3-319-47609-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47609-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47607-0

  • Online ISBN: 978-3-319-47609-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics