Skip to main content

Platelets and Immunity

  • Chapter
  • First Online:
Platelets in Thrombotic and Non-Thrombotic Disorders

Abstract

Over the last several decades, a new paradigm of platelet function has evolved. Platelets, long forgotten hemostatic cells, were demonstrated to be versatile immune effector cells engaged in every compartment of the immune system. Platelets express multiple immune receptors, such as toll-like receptors, allowing them to sense both pathogen- and danger-associated signals. Upon activation, platelets release a large array of biologically active molecules, like cytokines, chemokines, and growth factors, many of which are delivered in platelet-derived microparticles. Rich platelet transcriptome allows for signal-dependent translation and protein synthesis, and platelets are considered the main source of circulating microRNA. Platelets avidly interact with immune cells, endothelial cells, neutrophils, and monocytes in particular. Platelets were shown to propagate and modulate the inflammatory response of other immune cells in sterile inflammatory diseases, such as atherosclerosis and metabolic diseases, acute lung injury, ischemia reperfusion, and autoimmune diseases. Platelets are directed to the sites of infection and directly interact with pathogens. They contribute to elimination of pathogens by phagocytosis, release of microbicidal peptides, and signaling to other immune cells. Their interaction with neutrophils triggers release of neutrophil extracellular traps, a potent mechanism to entrap bacteria in flowing blood. Platelets were recently shown to be involved in adaptive immunity and possibly link innate and adaptive responses together. Fast flowing in the bloodstream, readily available for cellular interactions, able to sense signals from pathogens and damaged tissue, and packed with multiple immune mediators, platelets arise as immune sentinels forming an integral part of our immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP:

Adenosine diphosphate

AGEs:

Advanced glycation end products

ALI:

Acute lung injury

ATP:

Adenosine triphosphate

C1:

C1 esterase inhibitor

CCL2:

Chemokine (C–C motif) ligand 2, or monocyte chemotactic protein 1 (MCP-1)

CCL3:

Chemokine (C-C motif) ligand 3, or macrophage inhibitory protein 1 alpha (MIP-1α)

CCL5:

Chemokine (C-C motif) ligand 5, or regulated on activation, normal T cell expressed and secreted (RANTES)

CCL7:

Chemokine (C-C motif) ligand 7, or monocyte chemotactic protein 3 (MCP-3)

CCL17:

Chemokine (C-C motif) ligand 17, or thymus- and activation-regulated chemokine (TARC)

CCR1:

C–C chemokine receptor type 1, or CD191

CCR3:

C–C chemokine receptor type 3, or CD193

CCR4:

C–C chemokine receptor type 4, or CD194

CD11a/CD18:

Lymphocyte function-associated antigen 1, or LFA-1

CD11b/CD18:

Macrophage antigen 1, or Mac-1

CD14:

Cluster of differentiation 14

CD154:

Cluster of differentiation 154, or CD40L

CD31:

Cluster of differentiation 31, or PECAM-1

CD36:

Cluster of differentiation 36

CD40:

Cluster of differentiation 40

CD40L:

Cluster of differentiation 40 ligand; or CD154

CD41:

Cluster of differentiation 41

CD8+:

T cells expressing cluster of differentiation 8 on their surface

circRNA:

Circular ribonucleic acid

CLEC-2:

C-type lectin-like receptor 2

CXCL1:

Chemokine (C-X-C motif) ligand 1, or GRO1 oncogene, GROα, KC, neutrophil-activating protein 3 (NAP-3), melanoma growth stimulating activity, alpha (MGSA-α)

CXCL4:

Chemokine (C-X-C motif) ligand 4, or platelet factor 4 (PF4)

CXCL5:

Chemokine (C-X-C motif) ligand 5, or ENA-78

CXCL7:

Chemokine (C-X-C motif) ligand 7, or beta thromboglobulin 1 (βTG1), pro-platelet basic protein (PPBP)

CXCL8:

Chemokine (C-X-C motif) ligand 8, interleukin 8 (IL-8)

CXCL16:

Chemokine (C-X-C motif) ligand 16

CXCR4:

C-X-C chemokine receptor type 4, or CD184

DAMPs:

Damage-associated molecular patterns

DC(s):

Dendritic cell(s)

DNA:

Deoxyribonucleic acid

EAE:

Experimental autoimmune encephalitis

EMCV:

Encephalomyocarditis virus

ENA-78:

Epithelial-derived neutrophil-activating peptide 78, or CXCL5

Factor V, VII, XI, XIII:

Coagulation factors V, VII, XI, XIII

FcγRIIA:

Immunoglobulin receptor Fc gamma IIA, or CD32

FoxP3:

Forkhead box P3, or scurfin

FPR:

Formyl peptide receptor

FPR1:

N-formyl peptide receptor 1

FPR-L1:

N-formyl peptide receptor like 1

GPIb:

Glycoprotein Ib

GPIb-V-IX:

Membrane glycoprotein Ib, V and IX complex

GPIbα:

Glycoprotein Ib alpha

GPIIb:

Glycoprotein IIb, or integrin αIIb

GPIIbIIIa:

Glycoprotein IIbIIIa

GPVI:

Glycoprotein VI

HBV:

Hepatitis B virus

HCV:

Hepatitis C virus

HIV:

Human immunodeficiency virus

HMGB-1:

High-mobility group box 1

HSPs:

Heat shock proteins

ICAM-1:

Intercellular adhesion molecule 1

ICAM-2:

Intercellular adhesion molecule 2, or CD102

IFNα:

Interferon alpha

IgG:

Immunoglobulin G

IgM:

Immunoglobulin M

IL-1β:

Interleukin-1 beta

IL-1R:

Interleukin-1 receptor

IL-1α:

Interleukin-1 alpha

IL-6:

Interleukin 6

IL-8:

Interleukin 8, or CXCL8

IL-10:

Interleukin 10

IL-12p70:

Interleukin 12, or cytotoxic lymphocyte maturation factor (CLMF)

JAM-3:

Junctional adhesion molecule 3

JAM-C:

Junctional adhesion molecule C

LFA-1:

Lymphocyte function-associated antigen 1; or CD11a/CD18

LCMV:

Lymphocytic choriomeningitis virus

LPS:

Lipopolysaccharide

Mac-1:

Macrophage antigen 1, or CD11b/CD18

MD2:

Lymphocyte antigen 96

MCP-1:

Monocyte chemotactic protein 1, or chemokine (C-C motif) ligand 2 (CCL2)

MCP-3:

Monocyte chemotactic protein 3, or chemokine (C-C motif) ligand 7 (CCL7)

MHC:

Major histocompatibility complex

MIP-1α:

Macrophage inhibitory protein 1 alpha, or chemokine (C-C motif) ligand 3 (CCL3)

mRNA:

Messenger ribonucleic acid

miRNA:

Micro ribonucleic acid

MS:

Multiple sclerosis

MyD88:

Myeloid differentiation primary response gene 88

NET(s):

Neutrophil extracellular trap(s)

NFkB:

Nuclear factor kappa B

NK cells:

Natural killer cells

OLT:

Orthotopic liver transplantation

P2Y12:

Platelet adenosine diphosphate (ADP) receptor 12

PAF:

Platelet-activating factor

PAMPs:

Pathogen-associated molecular patterns

PAI-1:

Plasminogen activator inhibitor 1

PDGF:

Platelet-derived growth factor

PECAM-1:

Platelet-endothelial cell adhesion molecule 1

PF4:

Platelet factor 4, or CXCL4

PPARγ:

Peroxisome proliferator-activated receptor gamma

pre-mRNA:

Pre-messenger ribonucleic acid

PRRs:

Pathogen recognition receptors

PSGL-1:

P-selectin glycoprotein ligand 1

RA:

Rheumatoid arthritis

RAGE:

Receptor for advanced glycation end products

RANTES:

Regulated on activation, normal T cell expressed and secreted, or CCL5

RES:

Reticuloendothelial system

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

SLE:

Systemic lupus erythematosus

SSRI:

Selective serotonin reuptake inhibitors

TF:

Tissue factor

TFPI:

Tissue factor pathway inhibitor

TGF-β:

Transforming growth factor beta

TLR1:

Toll-like receptor 1

TLR2:

Toll-like receptor 2

TLR3:

Toll-like receptor 3

TLR4:

Toll-like receptor 4

TLR5:

Toll-like receptor 5

TLR6:

Toll-like receptor 6

TLR7:

Toll-like receptor 7

TLR9:

Toll-like receptor 9

TLR(s):

Toll-like receptor(s)

TNF:

Tumor necrosis factor

TNFα:

Tumor necrosis factor alpha

tRNA:

Transfer ribonucleic acid

Treg :

T regulatory cells

TSP-1:

Thrombospondin-1

TXA2 :

Thromboxane A2

VASP:

Vasodilator-stimulated phosphoprotein

VCAM-1:

Vascular cell adhesion molecule 1; or CD106

VEGF:

Vascular endothelial growth factor

vWf:

Von Willebrand factor

α2β1:

Integrin α2β1, or GPIa/IIa

α5β1:

Integrin α5β1

α6β1:

Integrin α6β1

αIIβ3:

Intergrin αIIβ3, or glycoprotein IIb/IIIa, GPIIbIIIa

αvβ3:

Integrin αvβ3, or CD51/CD61

βTG:

Beta thromboglobulin, or CXCL7

References

  • Aatonen MT, Ohman T, Nyman TA, Laitinen S, Gronholm M, Siljander PR (2014) Isolation and characterization of platelet-derived extracellular vesicles. J Extracell Vesicles 3, available from: PM:25147646

    Google Scholar 

  • Agrawal S, Ganguly S, Hajian P, Cao JN, Agrawal A (2015) PDGF upregulates CLEC-2 to induce T regulatory cells. Oncotarget 6(30):28621–28632, available from: PM:26416420

    PubMed  PubMed Central  Google Scholar 

  • Ahrens I, Chen YC, Topcic D, Bode M, Haenel D, Hagemeyer CE, Seeba H, Duerschmied D, Bassler N, Jandeleit-Dahm KA, Sweet MJ, Agrotis A, Bobik A, Peter K (2015) HMGB1 binds to activated platelets via the receptor for advanced glycation end products and is present in platelet rich human coronary artery thrombi. Thromb Haemost 114(5):994–1003, available from: PM:26202300

    Article  PubMed  Google Scholar 

  • Aiolfi R, Sitia G (2015) Chronic hepatitis B: role of anti-platelet therapy in inflammation control. Cell Mol Immunol 12(3):264–268, available from: PM:25578311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akca S, Haji-Michael P, De MA, Suter P, Levi M, Vincent JL (2002) Time course of platelet counts in critically ill patients. Crit Care Med 30(4):753–756, available from: PM:11940740

    Article  PubMed  Google Scholar 

  • Alhasan AA, Izuogu OG, Al-Balool HH, Steyn JS, Evans A, Colzani M, Ghevaert C, Mountford JC, Marenah L, Elliott DJ, Santibanez-Koref M, Jackson MS (2016) Circular RNA enrichment in platelets is a signature of transcriptome degradation. Blood 127(9):e1–e11, available from: PM:26660425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anabel AS, Eduardo PC, Pedro Antonio HC, Carlos SM, Juana NM, Honorio TA, Nicolas VS, Sergio Roberto AR (2014) Human platelets express Toll-like receptor 3 and respond to poly I:C. Hum Immunol 75(12):1244–1251, available from: PM:25315747

    Article  CAS  PubMed  Google Scholar 

  • Andersson PO, Stockelberg D, Jacobsson S, Wadenvik H (2000) A transforming growth factor-beta1-mediated bystander immune suppression could be associated with remission of chronic idiopathic thrombocytopenic purpura. Ann Hematol 79(9):507–513, available from: PM:11043422

    Article  CAS  PubMed  Google Scholar 

  • Andonegui G, Kerfoot SM, McNagny K, Ebbert KV, Patel KD, Kubes P (2005) Platelets express functional Toll-like receptor-4. Blood 106(7):2417–2423, available from: PM:15961512

    Article  CAS  PubMed  Google Scholar 

  • Anfossi G, Russo I, Trovati M (2009) Platelet dysfunction in central obesity. Nutr Metab Cardiovasc Dis 19(6):440–449, available from: PM:19346117

    Article  CAS  PubMed  Google Scholar 

  • Aslam R, Speck ER, Kim M, Crow AR, Bang KW, Nestel FP, Ni H, Lazarus AH, Freedman J, Semple JW (2006) Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood 107(2):637–641, available from: PM:16179373

    Article  CAS  PubMed  Google Scholar 

  • Assinger A, Laky M, Schabbauer G, Hirschl AM, Buchberger E, Binder BR, Volf I (2011) Efficient phagocytosis of periodontopathogens by neutrophils requires plasma factors, platelets and TLR2. J Thromb Haemost 9(4):799–809, available from: PM:21251195

    Article  CAS  PubMed  Google Scholar 

  • Badrnya S, Schrottmaier WC, Kral JB, Yaiw KC, Volf I, Schabbauer G, Soderberg-Naucler C, Assinger A (2014) Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation. Arterioscler Thromb Vasc Biol 34(3):571–580, available from: PM:24371083

    Article  CAS  PubMed  Google Scholar 

  • Baggiolini M, Dahinden CA (1994) CC chemokines in allergic inflammation. Immunol Today 15(3):127–133, available from: PM:8172645

    Article  CAS  PubMed  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252, available from: PM:9521319

    Article  CAS  PubMed  Google Scholar 

  • Baughman RP, Lower EE, Flessa HC, Tollerud DJ (1993) Thrombocytopenia in the intensive care unit. Chest 104(4):1243–1247, available from: PM:8404200

    Article  CAS  PubMed  Google Scholar 

  • Bednar M, Smith B, Pinto A, Mullane KM (1985) Neutrophil depletion suppresses 111In-labeled platelet accumulation in infarcted myocardium. J Cardiovasc Pharmacol 7(5):906–912, available from: PM:2413299

    Article  CAS  PubMed  Google Scholar 

  • Bennett JS (2005) Structure and function of the platelet integrin alphaIIbbeta3. J Clin Invest 115(12):3363–3369, available from: PM:16322781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett JS, Berger BW, Billings PC (2009) The structure and function of platelet integrins. J Thromb Haemost 7(Suppl 1):200–205, available from: PM:19630800

    Article  CAS  PubMed  Google Scholar 

  • Berthet J, Damien P, Hamzeh-Cognasse H, Arthaud CA, Eyraud MA, Zeni F, Pozzetto B, McNicol A, Garraud O, Cognasse F (2012) Human platelets can discriminate between various bacterial LPS isoforms via TLR4 signaling and differential cytokine secretion. Clin Immunol 145(3):189–200, available from: PM:23108090

    Article  CAS  PubMed  Google Scholar 

  • Blair P, Flaumenhaft R (2009) Platelet alpha-granules: basic biology and clinical correlates. Blood Rev 23(4):177–189, available from: PM:19450911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair P, Rex S, Vitseva O, Beaulieu L, Tanriverdi K, Chakrabarti S, Hayashi C, Genco CA, Iafrati M, Freedman JE (2009) Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase. Circ Res 104(3):346–354, available from: PM:19106411

    Article  CAS  PubMed  Google Scholar 

  • Blumberg N, Spinelli SL, Francis CW, Taubman MB, Phipps RP (2009) The platelet as an immune cell-CD40 ligand and transfusion immunomodulation. Immunol Res 45(2-3):251–260, available from: PM:19184537

    Article  CAS  PubMed  Google Scholar 

  • Boehlen F, Clemetson KJ (2001) Platelet chemokines and their receptors: what is their relevance to platelet storage and transfusion practice? Transfus Med 11(6):403–417, available from: PM:11851938

    Article  CAS  PubMed  Google Scholar 

  • Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, Massarotti EM, Remold-O’Donnell E, Farndale RW, Ware J, Lee DM (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327(5965):580–583, available from: PM:20110505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boilard E, Blanco P, Nigrovic PA (2012) Platelets: active players in the pathogenesis of arthritis and SLE. Nat Rev Rheumatol 8(9):534–542, available from: PM:22868927

    Article  CAS  PubMed  Google Scholar 

  • Bombeli T, Schwartz BR, Harlan JM (1998) Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), alphavbeta3 integrin, and GPIbalpha. J Exp Med 187(3):329–339, available from: PM:9449713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandt E, Ludwig A, Petersen F, Flad HD (2000) Platelet-derived CXC chemokines: old players in new games. Immunol Rev 177:204–216, available from: PM:11138777

    Article  CAS  PubMed  Google Scholar 

  • Bray PF, McKenzie SE, Edelstein LC, Nagalla S, Delgrosso K, Ertel A, Kupper J, Jing Y, Londin E, Loher P, Chen HW, Fortina P, Rigoutsos I (2013) The complex transcriptional landscape of the anucleate human platelet. BMC Genomics 14(1) available from: PM:23323973

    Google Scholar 

  • Brogly N, Devos P, Boussekey N, Georges H, Chiche A, Leroy O (2007) Impact of thrombocytopenia on outcome of patients admitted to ICU for severe community-acquired pneumonia. J Infect 55(2):136–140, available from: PM:17350105

    Article  PubMed  Google Scholar 

  • Brown GT, McIntyre TM (2011) Lipopolysaccharide signaling without a nucleus: kinase cascades stimulate platelet shedding of proinflammatory IL-1beta-rich microparticles. J Immunol 186(9):5489–5496, available from: PM:21430222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown GT, Narayanan P, Li W, Silverstein RL, McIntyre TM (2013) Lipopolysaccharide stimulates platelets through an IL-1beta autocrine loop. J Immunol 191(10):5196–5203, available from: PM:24081990

    Article  CAS  PubMed  Google Scholar 

  • Calderone RA, Rotondo MF, Sande MA (1978) Candida albicans endocarditis: ultrastructural studies of vegetation formation. Infect Immun 20(1):279–289, available from: PM:352932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cauwenberghs S, Feijge MA, Harper AG, Sage SO, Curvers J, Heemskerk JW (2006) Shedding of procoagulant microparticles from unstimulated platelets by integrin-mediated destabilization of actin cytoskeleton. FEBS Lett 580(22):5313–5320, available from: PM:16979629

    Article  CAS  PubMed  Google Scholar 

  • Chabert A, Hamzeh-Cognasse H, Pozzetto B, Cognasse F, Schattner M, Gomez RM, Garraud O (2015) Human platelets and their capacity of binding viruses: meaning and challenges? BMC Immunol 16:26, available from: PM:25913718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaipan C, Soilleux EJ, Simpson P, Hofmann H, Gramberg T, Marzi A, Geier M, Stewart EA, Eisemann J, Steinkasserer A, Suzuki-Inoue K, Fuller GL, Pearce AC, Watson SP, Hoxie JA, Baribaud F, Pohlmann S (2006) DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J Virol 80(18):8951–8960, available from: PM:16940507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman LM, Aggrey AA, Field DJ, Srivastava K, Ture S, Yui K, Topham DJ, Baldwin WM III, Morrell CN (2012) Platelets present antigen in the context of MHC class I. J Immunol 189(2):916–923, available from: PM:22706078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10(12):826–837, available from: PM:21088683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng SS, Lai JJ, Lukacs NW, Kunkel SL (2001) Granulocyte-macrophage colony stimulating factor up-regulates CCR1 in human neutrophils. J Immunol 166(2):1178–1184, available from: PM:11145699

    Article  CAS  PubMed  Google Scholar 

  • Ciompi ML, De CR, Bertolucci D, Bernini W, Michelassi C, L’Abbate A (1983) Uric acid levels and platelet function in humans. An in-vivo ex-vivo study. Clin Exp Rheumatol 1(2):143–147, available from: PM:6085297

    CAS  PubMed  Google Scholar 

  • Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, Devinney R, Doig CJ, Green FH, Kubes P (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13(4):463–469, available from: PM:17384648

    Article  CAS  PubMed  Google Scholar 

  • Claushuis TA, van Vught LA, Scicluna BP, Wiewel MA, Klein Klouwenberg PM, Hoogendijk AJ, Ong DS, Cremer OL, Horn J, Franitza M, Toliat MR, Nurnberg P, Zwinderman AH, Bonten MJ, Schultz MJ, van der Poll T (2016) Thrombocytopenia is associated with a dysregulated host response in critically ill sepsis patients. Blood 127:3062–3072, available from: PM:26956172

    Article  CAS  PubMed  Google Scholar 

  • Clawson CC, White JG (1971) Platelet interaction with bacteria. I. Reaction phases and effects of inhibitors. Am J Pathol 65(2):367–380, available from: PM:4400052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19(2):43–51, available from: PM:19144520

    Article  CAS  PubMed  Google Scholar 

  • Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O (2005) Evidence of Toll-like receptor molecules on human platelets. Immunol Cell Biol 83(2):196–198, available from: PM:15748217

    Article  CAS  PubMed  Google Scholar 

  • Cognasse F, Hamzeh-Cognasse H, Lafarge S, Delezay O, Pozzetto B, McNicol A, Garraud O (2008) Toll-like receptor 4 ligand can differentially modulate the release of cytokines by human platelets. Br J Haematol 141(1):84–91, available from: PM:18279456

    Article  CAS  PubMed  Google Scholar 

  • Cognasse F, Nguyen KA, Damien P, McNicol A, Pozzetto B, Hamzeh-Cognasse H, Garraud O (2015) The inflammatory role of platelets via their TLRs and siglec receptors. Front Immunol 6:83, available from: PM:25784910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cole AM, Ganz T, Liese AM, Burdick MD, Liu L, Strieter RM (2001) Cutting edge: IFN-inducible ELR- CXC chemokines display defensin-like antimicrobial activity. J Immunol 167(2):623–627, available from: PM:11441062

    Article  CAS  PubMed  Google Scholar 

  • Coutts SB, Wein TH, Lindsay MP, Buck B, Cote R, Ellis P, Foley N, Hill MD, Jaspers S, Jin AY, Kwiatkowski B, MacPhail C, McNamara-Morse D, McMurtry MS, Mysak T, Pipe A, Silver K, Smith EE, Gubitz G (2015) Canadian Stroke Best Practice Recommendations: secondary prevention of stroke guidelines, update 2014. Int J Stroke 10(3):282–291, available from: PM:25535808

    Article  PubMed  Google Scholar 

  • Cox D, McConkey S (2010) The role of platelets in the pathogenesis of cerebral malaria. Cell Mol Life Sci 67(4):557–568, available from: PM:20091081

    Article  CAS  PubMed  Google Scholar 

  • Czapiga M, Gao JL, Kirk A, Lekstrom-Himes J (2005) Human platelets exhibit chemotaxis using functional N-formyl peptide receptors. Exp Hematol 33(1):73–84, available from: PM:15661400

    Article  CAS  PubMed  Google Scholar 

  • da Costa Martins PA, van Gils JM, Mol A, Hordijk PL, Zwaginga JJ (2006) Platelet binding to monocytes increases the adhesive properties of monocytes by up-regulating the expression and functionality of beta1 and beta2 integrins. J Leukoc Biol 79(3):499–507, available from: PM:16415171

    Article  PubMed  CAS  Google Scholar 

  • da Costa MP, Garcia-Vallejo JJ, van Thienen JV, Fernandez-Borja M, van Gils JM, Beckers C, Horrevoets AJ, Hordijk PL, Zwaginga JJ (2007) P-selectin glycoprotein ligand-1 is expressed on endothelial cells and mediates monocyte adhesion to activated endothelium. Arterioscler Thromb Vasc Biol 27(5):1023–1029, available from: PM:17322099

    Article  CAS  Google Scholar 

  • Dale GL, Friese P, Batar P, Hamilton SF, Reed GL, Jackson KW, Clemetson KJ, Alberio L (2002) Stimulated platelets use serotonin to enhance their retention of procoagulant proteins on the cell surface. Nature 415(6868):175–179, available from: PM:11805836

    Article  CAS  PubMed  Google Scholar 

  • DaMatta RA, Seabra SH, de Souza W (1998) Further studies on the phagocytic capacity of chicken thrombocytes. J Submicrosc Cytol Pathol 30(2):271–277, available from: PM:9648290

    CAS  PubMed  Google Scholar 

  • Danese S, de la Motte C, Reyes BM, Sans M, Levine AD, Fiocchi C (2004) Cutting edge: T cells trigger CD40-dependent platelet activation and granular RANTES release: a novel pathway for immune response amplification. J Immunol 172(4):2011–2015, available from: PM:14764664

    Article  CAS  PubMed  Google Scholar 

  • Danon D, Jerushalmy Z, De Vries A (1959) Incorporation of influenza virus in human blood platelets in vitro. Electron microscopical observation. Virology 9:719–722, available from: PM:13814035

    Article  CAS  PubMed  Google Scholar 

  • de Almeida AJ, Campos-de-Magalhaes M, Brandao-Mello CE, de Oliveira RV, do Espirito-Santo MP, Yoshida CF, Lampe E (2009) Detection of hepatitis C virus in platelets: evaluating its relationship to antiviral therapy outcome. Hepatogastroenterology 56(90):429–436 available from: PM:19579615

    Google Scholar 

  • de Stoppelaar SF, van 't Veer C, Claushuis TA, Albersen BJ, Roelofs JJ, van der Poll T (2014a) Thrombocytopenia impairs host defense in gram-negative pneumonia-derived sepsis in mice. Blood 124(25):3781–3790 available from: PM:25301709

    Google Scholar 

  • de Stoppelaar SF, van 't Veer C, van der Poll T (2014b) The role of platelets in sepsis. Thromb Haemost 112(4):666–677 available from: PM:24966015

    Google Scholar 

  • Delmas Y, Viallard JF, Solanilla A, Villeneuve J, Pasquet JM, Belloc F, Dubus I, Dechanet-Merville J, Merville P, Blanco P, Pellegrin JL, Nurden AT, Combe C, Ripoche J (2005) Activation of mesangial cells by platelets in systemic lupus erythematosus via a CD154-dependent induction of CD40. Kidney Int 68(5):2068–2078, available from: PM:16221206

    Article  CAS  PubMed  Google Scholar 

  • Denis MM, Tolley ND, Bunting M, Schwertz H, Jiang H, Lindemann S, Yost CC, Rubner FJ, Albertine KH, Swoboda KJ, Fratto CM, Tolley E, Kraiss LW, McIntyre TM, Zimmerman GA, Weyrich AS (2005) Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell 122(3):379–391, available from: PM:16096058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devi S, Kuligowski MP, Kwan RY, Westein E, Jackson SP, Kitching AR, Hickey MJ (2010) Platelet recruitment to the inflamed glomerulus occurs via an alphaIIbbeta3/GPVI-dependent pathway. Am J Pathol 177(3):1131–1142, available from: PM:20651232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diacovo TG, deFougerolles AR, Bainton DF, Springer TA (1994) A functional integrin ligand on the surface of platelets: intercellular adhesion molecule-2. J Clin Invest 94(3):1243–1251, available from: PM:8083366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA (1996) Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. Blood 88(1):146–157, available from: PM:8704169

    CAS  PubMed  Google Scholar 

  • Drago L, Bortolin M, Vassena C, Taschieri S, Del FM (2013) Antimicrobial activity of pure platelet-rich plasma against microorganisms isolated from oral cavity. BMC Microbiol 13:47, available from: PM:23442413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duerschmied D, Suidan GL, Demers M, Herr N, Carbo C, Brill A, Cifuni SM, Mauler M, Cicko S, Bader M, Idzko M, Bode C, Wagner DD (2013) Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood 121(6):1008–1015, available from: PM:23243271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duerschmied D, Bode C, Ahrens I (2014) Immune functions of platelets. Thromb Haemost 112(4):678–691, available from: PM:25209670

    Article  PubMed  Google Scholar 

  • Duffau P, Seneschal J, Nicco C, Richez C, Lazaro E, Douchet I, Bordes C, Viallard JF, Goulvestre C, Pellegrin JL, Weil B, Moreau JF, Batteux F, Blanco P (2010) Platelet CD154 potentiates interferon-alpha secretion by plasmacytoid dendritic cells in systemic lupus erythematosus. Sci Transl Med 2(47):47ra63 available from: PM:20811042

    Google Scholar 

  • Edelstein LC, McKenzie SE, Shaw C, Holinstat MA, Kunapuli SP, Bray PF (2013) MicroRNAs in platelet production and activation. J Thromb Haemost 11(Suppl 1):340–350, available from: PM:23809137

    Article  PubMed  Google Scholar 

  • Elstad MR, McIntyre TM, Prescott SM, Zimmerman GA (1995) The interaction of leukocytes with platelets in blood coagulation. Curr Opin Hematol 2(1):47–54, available from: PM:9371971

    Article  CAS  PubMed  Google Scholar 

  • Elzey BD, Tian J, Jensen RJ, Swanson AK, Lees JR, Lentz SR, Stein CS, Nieswandt B, Wang Y, Davidson BL, Ratliff TL (2003) Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments. Immunity 19(1):9–19, available from: PM:12871635

    Article  CAS  PubMed  Google Scholar 

  • Elzey BD, Sprague DL, Ratliff TL (2005) The emerging role of platelets in adaptive immunity. Cell Immunol 238(1):1–9, available from: PM:16442516

    Article  CAS  PubMed  Google Scholar 

  • Elzey BD, Schmidt NW, Crist SA, Kresowik TP, Harty JT, Nieswandt B, Ratliff TL (2008) Platelet-derived CD154 enables T-cell priming and protection against Listeria monocytogenes challenge. Blood 111(7):3684–3691, available from: PM:18256321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elzey BD, Ratliff TL, Sowa JM, Crist SA (2011) Platelet CD40L at the interface of adaptive immunity. Thromb Res 127(3):180–183, available from: PM:21075431

    Article  CAS  PubMed  Google Scholar 

  • Engelmann B, Massberg S (2013) Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 13(1):34–45, available from: PM:23222502

    Article  CAS  PubMed  Google Scholar 

  • Ertenli I, Kiraz S, Arici M, Haznedaroglu IC, Calguneri M, Celik I, Kirazli S (1998) P-selectin as a circulating molecular marker in rheumatoid arthritis with thrombocytosis. J Rheumatol 25(6):1054–1058, available from: PM:9632062

    CAS  PubMed  Google Scholar 

  • Esch JS, Jurk K, Knoefel WT, Roeder G, Voss H, Tustas RY, Schmelzle M, Krieg A, Eisenberger CF, Topp S, Rogiers X, Fischer L, Aken HV, Kehrel BE (2010) Platelet activation and increased tissue factor expression on monocytes in reperfusion injury following orthotopic liver transplantation. Platelets 21(5):348–359, available from: PM:20569187

    Article  PubMed  CAS  Google Scholar 

  • Etingin OR, Silverstein RL, Hajjar DP (1993) von Willebrand factor mediates platelet adhesion to virally infected endothelial cells. Proc Natl Acad Sci U S A 90(11):5153–5156, available from: PM:8389471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evangelista V, Manarini S, Rotondo S, Martelli N, Polischuk R, McGregor JL, de Gaetano G, Cerletti C (1996) Platelet/polymorphonuclear leukocyte interaction in dynamic conditions: evidence of adhesion cascade and cross talk between P-selectin and the beta 2 integrin CD11b/CD18. Blood 88(11):4183–4194, available from: PM:8943853

    CAS  PubMed  Google Scholar 

  • Fajardo LF (1979) The role of platelets in infections. I. Observations in human and murine malaria. Arch Pathol Lab Med 103(3):131–134, available from: PM:371580

    CAS  PubMed  Google Scholar 

  • Faull RJ, Du X, Ginsberg MH (1994) Receptors on platelets. Methods Enzymol 245:183–194, available from: PM:7760734

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Dorhoi A, Mollenkopf HJ, Yin H, Dong Z, Mao L, Zhou J, Bi A, Weber S, Maertzdorf J, Chen G, Chen Y, Kaufmann SH (2014) Platelets direct monocyte differentiation into epithelioid-like multinucleated giant foam cells with suppressive capacity upon mycobacterial stimulation. J Infect Dis 210(11):1700–1710, available from: PM:24987031

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferguson DJ, McColm AA, Savage TJ, Ryan DM, Acred P (1986) A morphological study of experimental rabbit staphylococcal endocarditis and aortitis. I. Formation and effect of infected and uninfected vegetations on the aorta. Br J Exp Pathol 67(5):667–678, available from: PM:3790427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald JR, Foster TJ, Cox D (2006) The interaction of bacterial pathogens with platelets. Nat Rev Microbiol 4(6):445–457, available from: PM:16710325

    Article  CAS  PubMed  Google Scholar 

  • Freedman JE (2008) Oxidative stress and platelets. Arterioscler Thromb Vasc Biol 28(3):s11–s16, available from: PM:18174453

    Article  CAS  PubMed  Google Scholar 

  • Frenette PS, Denis CV, Weiss L, Jurk K, Subbarao S, Kehrel B, Hartwig JH, Vestweber D, Wagner DD (2000) P-Selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet-endothelial interactions in vivo. J Exp Med 191(8):1413–1422, available from: PM:10770806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 107(36):15880–15885, available from: PM:20798043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs TA, Brill A, Wagner DD (2012) Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol 32(8):1777–1783, available from: PM:22652600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gachet C (2001) ADP receptors of platelets and their inhibition. Thromb Haemost 86(1):222–232, available from: PM:11487010

    CAS  PubMed  Google Scholar 

  • Gallucci S, Matzinger P (2001) Danger signals: SOS to the immune system. Curr Opin Immunol 13(1):114–119, available from: PM:11154927

    Article  CAS  PubMed  Google Scholar 

  • Garraud O, Cognasse F (2015) Are platelets cells? And if yes, are they immune cells? Front Immunol 6:70, available from: PM:25750642

    PubMed  PubMed Central  Google Scholar 

  • Garraud O, Hamzeh-Cognasse H, Pozzetto B, Cavaillon JM, Cognasse F (2013) Bench-to-bedside review: platelets and active immune functions – new clues for immunopathology? Crit Care 17(4):236, available from: PM:23998653

    Article  PubMed  PubMed Central  Google Scholar 

  • Gawaz M, Vogel S (2013) Platelets in tissue repair: control of apoptosis and interactions with regenerative cells. Blood 122(15):2550–2554, available from: PM:23963043

    Article  CAS  PubMed  Google Scholar 

  • Gawaz M, Brand K, Dickfeld T, Pogatsa-Murray G, Page S, Bogner C, Koch W, Schomig A, Neumann F (2000) Platelets induce alterations of chemotactic and adhesive properties of endothelial cells mediated through an interleukin-1-dependent mechanism. Implications for atherogenesis. Atherosclerosis 148(1):75–85, available from: PM:10580173

    Article  CAS  PubMed  Google Scholar 

  • Gawaz M, Langer H, May AE (2005) Platelets in inflammation and atherogenesis. J Clin Invest 115(12):3378–3384, available from: PM:16322783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gay LJ, Felding-Habermann B (2011) Contribution of platelets to tumour metastasis. Nat Rev Cancer 11(2):123–134, available from: PM:21258396

    Article  CAS  PubMed  Google Scholar 

  • Gustafson B, Hammarstedt A, Andersson CX, Smith U (2007) Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol 27(11):2276–2283, available from: PM:17823366

    Article  CAS  PubMed  Google Scholar 

  • Habets KL, Huizinga TW, Toes RE (2013) Platelets and autoimmunity. Eur J Clin Invest 43(7):746–757, available from: PM:23617819

    Article  CAS  PubMed  Google Scholar 

  • Hamburger SA, McEver RP (1990) GMP-140 mediates adhesion of stimulated platelets to neutrophils. Blood 75(3):550–554, available from: PM:1688717

    CAS  PubMed  Google Scholar 

  • Hamzeh-Cognasse H, Damien P, Chabert A, Pozzetto B, Cognasse F, Garraud O (2015) Platelets and infections – complex interactions with bacteria. Front Immunol 6:82, available from: PM:25767472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hawrylowicz CM, Howells GL, Feldmann M (1991) Platelet-derived interleukin 1 induces human endothelial adhesion molecule expression and cytokine production. J Exp Med 174(4):785–790, available from: PM:1680957

    Article  CAS  PubMed  Google Scholar 

  • Henn V, Slupsky JR, Grafe M, Anagnostopoulos I, Forster R, Muller-Berghaus G, Kroczek RA (1998) CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391(6667):591–594, available from: PM:9468137

    Article  CAS  PubMed  Google Scholar 

  • Herd C, Page C (1995) Do platelets have a role as inflammatory cells? In: Joseph M (ed) Immunopharmacology of platelets. Academic, pp 1–20

    Google Scholar 

  • Herter JM, Rossaint J, Zarbock A (2014) Platelets in inflammation and immunity. J Thromb Haemost 12(11):1764–1775, available from: PM:25224706

    Article  CAS  PubMed  Google Scholar 

  • Hofstetter HH, Mossner R, Lesch KP, Linker RA, Toyka KV, Gold R (2005) Absence of reuptake of serotonin influences susceptibility to clinical autoimmune disease and neuroantigen-specific interferon-gamma production in mouse EAE. Clin Exp Immunol 142(1):39–44, available from: PM:16178854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horstman LL, Ahn YS (1999) Platelet microparticles: a wide-angle perspective. Crit Rev Oncol Hematol 30(2):111–142, available from: PM:10439058

    Article  CAS  PubMed  Google Scholar 

  • Huang HS, Chang HH (2012) Platelets in inflammation and immune modulations: functions beyond hemostasis. Arch Immunol Ther Exp (Warsz), available from: PM:22940877

    Google Scholar 

  • Huo Y, Schober A, Forlow SB, Smith DF, Hyman MC, Jung S, Littman DR, Weber C, Ley K (2003) Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 9(1):61–67, available from: PM:12483207

    Article  CAS  PubMed  Google Scholar 

  • Iannacone M, Sitia G, Isogawa M, Marchese P, Castro MG, Lowenstein PR, Chisari FV, Ruggeri ZM, Guidotti LG (2005) Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nat Med 11(11):1167–1169, available from: PM:16258538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ioannou A, Kannan L, Tsokos GC (2013) Platelets, complement and tissue inflammation. Autoimmunity 46(1):1–5, available from: PM:22928713

    Article  CAS  PubMed  Google Scholar 

  • Issekutz AC, Ripley M, Jackson JR (1983) Role of neutrophils in the deposition of platelets during acute inflammation. Lab Invest 49(6):716–724, available from: PM:6361376

    CAS  PubMed  Google Scholar 

  • Italiano JE Jr, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, Ryeom S, Folkman J, Klement GL (2008) Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111(3):1227–1233, available from: PM:17962514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaff MS, McKenna D, McCann SR (1985) Platelet phagocytosis: a probable mechanism of thrombocytopenia in Plasmodium falciparum infection. J Clin Pathol 38(11):1318–1319, available from: PM:3905875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janeway Charles A Jr, Paul T, Mark W, Shlomchik Mark J (2001) Immunobiology: the immune system in health and disease, 5th edn. Garland Science, New York

    Google Scholar 

  • Jenne CN, Kubes P (2015) Platelets in inflammation and infection. Platelets 26(4):286–292, available from: PM:25806786

    Article  CAS  PubMed  Google Scholar 

  • Jenne CN, Urrutia R, Kubes P (2013a) Platelets: bridging hemostasis, inflammation, and immunity. Int J Lab Hematol 35(3):254–261, available from: PM:23590652

    Article  CAS  PubMed  Google Scholar 

  • Jenne CN, Wong CH, Zemp FJ, McDonald B, Rahman MM, Forsyth PA, McFadden G, Kubes P (2013b) Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe 13(2):169–180, available from: PM:23414757

    Article  CAS  PubMed  Google Scholar 

  • Jurk K, Kehrel BE (2005) Platelets: physiology and biochemistry. Semin Thromb Hemost 31(4):381–392, available from: PM:16149014

    Article  CAS  PubMed  Google Scholar 

  • Kahn F, Hurley S, Shannon O (2013) Platelets promote bacterial dissemination in a mouse model of streptococcal sepsis. Microbes Infect 15(10-11):669–676, available from: PM:23711899

    Article  CAS  PubMed  Google Scholar 

  • Kansas GS (1996) Selectins and their ligands: current concepts and controversies. Blood 88(9):3259–3287, available from: PM:8896391

    CAS  PubMed  Google Scholar 

  • Kaplanski G, Porat R, Aiura K, Erban JK, Gelfand JA, Dinarello CA (1993) Activated platelets induce endothelial secretion of interleukin-8 in vitro via an interleukin-1-mediated event. Blood 81(10):2492–2495, available from: PM:8490165

    CAS  PubMed  Google Scholar 

  • Karshovska E, Weber C, von Hundelshausen HP (2013) Platelet chemokines in health and disease. Thromb Haemost 110(5):894–902, available from: PM:23783401

    Article  CAS  PubMed  Google Scholar 

  • Khandoga A, Biberthaler P, Enders G, Axmann S, Hutter J, Messmer K, Krombach F (2002) Platelet adhesion mediated by fibrinogen-intercelllular adhesion molecule-1 binding induces tissue injury in the postischemic liver in vivo. Transplantation 74(5):681–688, available from: PM:12352886

    Article  CAS  PubMed  Google Scholar 

  • Kissel K, Berber S, Nockher A, Santoso S, Bein G, Hackstein H (2006) Human platelets target dendritic cell differentiation and production of proinflammatory cytokines. Transfusion 46(5):818–827, available from: PM:16686850

    Article  CAS  PubMed  Google Scholar 

  • Klinger MH, Jelkmann W (2002) Role of blood platelets in infection and inflammation. J Interferon Cytokine Res 22(9):913–922, available from: PM:12396713

    Article  CAS  PubMed  Google Scholar 

  • Knijff-Dutmer EA, Koerts J, Nieuwland R, Kalsbeek-Batenburg EM, van de Laar MA (2002) Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum 46(6):1498–1503, available from: PM:12115179

    Article  CAS  PubMed  Google Scholar 

  • Kohler D, Birk P, Konig K, Straub A, Eldh T, Morote-Garcia JC, Rosenberger P (2011a) Phosphorylation of vasodilator-stimulated phosphoprotein (VASP) dampens hepatic ischemia-reperfusion injury. PLoS One 6(12), e29494, available from: PM:22216296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kohler D, Straub A, Weissmuller T, Faigle M, Bender S, Lehmann R, Wendel HP, Kurz J, Walter U, Zacharowski K, Rosenberger P (2011b) Phosphorylation of vasodilator-stimulated phosphoprotein prevents platelet-neutrophil complex formation and dampens myocardial ischemia-reperfusion injury. Circulation 123(22):2579–2590, available from: PM:21606399

    Article  PubMed  CAS  Google Scholar 

  • Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8(4):279–289, available from: PM:18340345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo SP, Bayer AS, Sahl HG, Proctor RA, Yeaman MR (1996) Staphylocidal action of thrombin-induced platelet microbicidal protein is not solely dependent on transmembrane potential. Infect Immun 64(3):1070–1074, available from: PM:8641763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koupenova M, Vitseva O, MacKay CR, Beaulieu LM, Benjamin EJ, Mick E, Kurt-Jones EA, Ravid K, Freedman JE (2014) Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood 124(5):791–802, available from: PM:24755410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krijgsveld J, Zaat SA, Meeldijk J, van Veelen PA, Fang G, Poolman B, Brandt E, Ehlert JE, Kuijpers AJ, Engbers GH, Feijen J, Dankert J (2000) Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines. J Biol Chem 275(27):20374–20381, available from: PM:10877842

    Article  CAS  PubMed  Google Scholar 

  • Kuijper PH, Gallardo Torres HI, Houben LA, Lammers JW, Zwaginga JJ, Koenderman L (1998) P-selectin and MAC-1 mediate monocyte rolling and adhesion to ECM-bound platelets under flow conditions. J Leukoc Biol 64(4):467–473, available from: PM:9766627

    CAS  PubMed  Google Scholar 

  • Kuznik BI, Vitkovsky YA, Gvozdeva OV, Solpov AV, Magen E (2014) Lymphocyte-platelet crosstalk in Graves’ disease. Am J Med Sci 347(3):206–210, available from: PM:23571468

    Article  PubMed  Google Scholar 

  • Lacci KM, Dardik A (2010) Platelet-rich plasma: support for its use in wound healing. Yale J Biol Med 83(1):1–9, available from: PM:20351977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laffont B, Corduan A, Ple H, Duchez AC, Cloutier N, Boilard E, Provost P (2013) Activated platelets can deliver mRNA regulatory Ago2*microRNA complexes to endothelial cells via microparticles. Blood 122(2):253–261, available from: PM:23652806

    Article  CAS  PubMed  Google Scholar 

  • Lam FW, Vijayan KV, Rumbaut RE (2015) Platelets and their interactions with other immune cells. Compr Physiol 5(3):1265–1280, available from: PM:26140718

    Article  PubMed  PubMed Central  Google Scholar 

  • Langer HF, Daub K, Braun G, Schonberger T, May AE, Schaller M, Stein GM, Stellos K, Bueltmann A, Siegel-Axel D, Wendel HP, Aebert H, Roecken M, Seizer P, Santoso S, Wesselborg S, Brossart P, Gawaz M (2007) Platelets recruit human dendritic cells via Mac-1/JAM-C interaction and modulate dendritic cell function in vitro. Arterioscler Thromb Vasc Biol 27(6):1463–1470, available from: PM:17379836

    Article  CAS  PubMed  Google Scholar 

  • Langer HF, Choi EY, Zhou H, Schleicher R, Chung KJ, Tang Z, Gobel K, Bdeir K, Chatzigeorgiou A, Wong C, Bhatia S, Kruhlak MJ, Rose JW, Burns JB, Hill KE, Qu H, Zhang Y, Lehrmann E, Becker KG, Wang Y, Simon DI, Nieswandt B, Lambris JD, Li X, Meuth SG, Kubes P, Chavakis T (2012) Platelets contribute to the pathogenesis of experimental autoimmune encephalomyelitis. Circ Res 110(9):1202–1210, available from: PM:22456181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lannan KL, Sahler J, Kim N, Spinelli SL, Maggirwar SB, Garraud O, Cognasse F, Blumberg N, Phipps RP (2015) Breaking the mold: transcription factors in the anucleate platelet and platelet-derived microparticles. Front Immunol 6:48, available from: PM:25762994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laschke MW, Dold S, Menger MD, Jeppsson B, Thorlacius H (2008) Platelet-dependent accumulation of leukocytes in sinusoids mediates hepatocellular damage in bile duct ligation-induced cholestasis. Br J Pharmacol 153(1):148–156, available from: PM:18026126

    Article  CAS  PubMed  Google Scholar 

  • Leon-Ponte M, Ahern GP, O’Connell PJ (2007) Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood 109(8):3139–3146, available from: PM:17158224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leslie M (2010) Cell biology. Beyond clotting: the powers of platelets. Science 328(5978):562–564, available from: PM:20430990

    Article  CAS  PubMed  Google Scholar 

  • Li C, Li J, Li Y, Lang S, Yougbare I, Zhu G, Chen P, Ni H (2012) Crosstalk between platelets and the immune system: old systems with new discoveries. Adv Hematol 2012:384685, available from: PM:23008717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lievens D, von Hundelshausen HP (2011) Platelets in atherosclerosis. Thromb Haemost 106(5):827–838 available from: PM:22012554

    Google Scholar 

  • Lindemann S, Tolley ND, Dixon DA, McIntyre TM, Prescott SM, Zimmerman GA, Weyrich AS (2001) Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis. J Cell Biol 154(3):485–490, available from: PM:11489912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay CR, Edelstein LC (2016) MicroRNAs in platelet physiology and function. Semin Thromb Hemost 42(3):215–222, available from: PM:26951501

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Gao XM, Fang L, Jennings NL, Su Y, Q X, Samson AL, Kiriazis H, Wang XF, Shan L, Sturgeon SA, Medcalf RL, Jackson SP, Dart AM, Du XJ (2011) Novel role of platelets in mediating inflammatory responses and ventricular rupture or remodeling following myocardial infarction. Arterioscler Thromb Vasc Biol 31(4):834–841 available from: PM:21252067

    Google Scholar 

  • Londin ER, Hatzimichael E, Loher P, Edelstein L, Shaw C, Delgrosso K, Fortina P, Bray PF, McKenzie SE, Rigoutsos I (2014) The human platelet: strong transcriptome correlations among individuals associate weakly with the platelet proteome. Biol Direct 9:3, available from: PM:24524654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loria GD, Romagnoli PA, Moseley NB, Rucavado A, Altman JD (2013) Platelets support a protective immune response to LCMV by preventing splenic necrosis. Blood 121(6):940–950, available from: PM:22566603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugo-Villarino G, Neyrolles O (2014) Of clots and granulomas: platelets are new players in immunity to tuberculosis. J Infect Dis 210(11):1687–1690, available from: PM:24987032

    Article  PubMed  Google Scholar 

  • Ma AC, Kubes P (2008) Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J Thromb Haemost 6(3):415–420, available from: PM:18088344

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Garlanda C (2013) Platelet-macrophage partnership in innate immunity and inflammation. Nat Immunol 14(8):768–770, available from: PM:23867924

    Article  CAS  PubMed  Google Scholar 

  • Massberg S, Enders G, Matos FC, Tomic LI, Leiderer R, Eisenmenger S, Messmer K, Krombach F (1999) Fibrinogen deposition at the postischemic vessel wall promotes platelet adhesion during ischemia-reperfusion in vivo. Blood 94(11):3829–3838, available from: PM:10572098

    CAS  PubMed  Google Scholar 

  • Massberg S, Brand K, Gruner S, Page S, Muller E, Muller I, Bergmeier W, Richter T, Lorenz M, Konrad I, Nieswandt B, Gawaz M (2002) A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 196(7):887–896, available from: PM:12370251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matera C, Falzarano C, Berrino L, Rossi F (1992) Effects of tetanus toxin, Salmonella typhimurium porin, and bacterial lipopolysaccharide on platelet aggregation. J Med 23(5):327–338, available from: PM:1335019

    CAS  PubMed  Google Scholar 

  • Matsuno H, Kozawa O, Niwa M, Usui A, Ito H, Uematsu T, Kato K (1998) A heat shock-related protein, p20, plays an inhibitory role in platelet activation. FEBS Lett 429(3):327–329, available from: PM:9662442

    Article  CAS  PubMed  Google Scholar 

  • Maugeri N, Baldini M, Ramirez GA, Rovere-Querini P, Manfredi AA (2012) Platelet-leukocyte deregulated interactions foster sterile inflammation and tissue damage in immune-mediated vessel diseases. Thromb Res 129(3):267–273, available from: PM:22245222

    Article  CAS  PubMed  Google Scholar 

  • Maugeri N, Campana L, Gavina M, Covino C, De MM, Panciroli C, Maiuri L, Maseri A, D’Angelo A, Bianchi ME, Rovere-Querini P, Manfredi AA (2014) Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost 12(12):2074–2088, available from: PM:25163512

    Article  CAS  PubMed  Google Scholar 

  • Mause SF, von Hundelshausen P, Zernecke A, Koenen RR, Weber C (2005) Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler Thromb Vasc Biol 25(7):1512–1518 available from: PM:15890969

    Google Scholar 

  • Maynard DM, Heijnen HF, Horne MK, White JG, Gahl WA (2007) Proteomic analysis of platelet alpha-granules using mass spectrometry. J Thromb Haemost 5(9):1945–1955, available from: PM:17723134

    Article  CAS  PubMed  Google Scholar 

  • McDonald B, Kubes P (2011) Cellular and molecular choreography of neutrophil recruitment to sites of sterile inflammation. J Mol Med (Berl) 89(11):1079–1088 available from: PM:21751029

    Google Scholar 

  • McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P (2012) Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 12(3):324–333, available from: PM:22980329

    Article  CAS  PubMed  Google Scholar 

  • McIntyre TM, Prescott SM, Weyrich AS, Zimmerman GA (2003) Cell-cell interactions: leukocyte-endothelial interactions. Curr Opin Hematol 10(2):150–158, available from: PM:12579042

    Article  CAS  PubMed  Google Scholar 

  • McManus DD, Freedman JE (2015) MicroRNAs in platelet function and cardiovascular disease. Nat Rev Cardiol 12(12):711–717, available from: PM:26149483

    Article  CAS  PubMed  Google Scholar 

  • McMorran BJ, Marshall VM, de Graaf C, Drysdale KE, Shabbar M, Smyth GK, Corbin JE, Alexander WS, Foote SJ (2009) Platelets kill intraerythrocytic malarial parasites and mediate survival to infection. Science 323(5915):797–800 available from: PM:19197068

    Google Scholar 

  • McMorran BJ, Wieczorski L, Drysdale KE, Chan JA, Huang HM, Smith C, Mitiku C, Beeson JG, Burgio G, Foote SJ (2012) Platelet factor 4 and Duffy antigen required for platelet killing of Plasmodium falciparum. Science 338(6112):1348–1351, available from: PM:23224555

    Article  CAS  PubMed  Google Scholar 

  • McMorran BJ, Burgio G, Foote SJ (2013) New insights into the protective power of platelets in malaria infection. Commun Integr Biol 6(3):e23653 available from: PM:23710276

    Google Scholar 

  • Menezes GB, McAvoy EF, Kubes P (2009) Hyaluronan, platelets, and monocytes: a novel pro-inflammatory triad. Am J Pathol 174(6):1993–1995, available from: PM:19435789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercier RC, Dietz RM, Mazzola JL, Bayer AS, Yeaman MR (2004) Beneficial influence of platelets on antibiotic efficacy in an in vitro model of Staphylococcus aureus-induced endocarditis. Antimicrob Agents Chemother 48(7):2551–2557, available from: PM:15215108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer Dos SS, Blankenbach K, Scholich K, Dorr A, Monsefi N, Keese M, Linke B, Deckmyn H, Nelson K, Harder S (2015) Platelets from flowing blood attach to the inflammatory chemokine CXCL16 expressed in the endothelium of the human vessel wall. Thromb Haemost 114(2):297–312, available from: PM:25904061

    Article  Google Scholar 

  • Michelson AD, Barnard MR, Krueger LA, Valeri CR, Furman MI (2001) Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin: studies in baboons, human coronary intervention, and human acute myocardial infarction. Circulation 104(13):1533–1537, available from: PM:11571248

    Article  CAS  PubMed  Google Scholar 

  • Morange PE, Alessi MC (2013) Thrombosis in central obesity and metabolic syndrome: mechanisms and epidemiology. Thromb Haemost 110(4):669–680, available from: PM:23765199

    Article  CAS  PubMed  Google Scholar 

  • Moreau D, Timsit JF, Vesin A, Garrouste-Org LA, de Lassence A, Zahar JR, Adrie C, Vincent F, Cohen Y, Schlemmer B, Azoulay E (2007) Platelet count decline: an early prognostic marker in critically ill patients with prolonged ICU stays. Chest 131(6):1735–1741 available from: PM:17475637

    Google Scholar 

  • Morel O, Jesel L, Freyssinet JM, Toti F (2011) Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol 31(1):15–26, available from: PM:21160064

    Article  CAS  PubMed  Google Scholar 

  • Morrell CN, Aggrey AA, Chapman LM, Modjeski KL (2014) Emerging roles for platelets as immune and inflammatory cells. Blood 123(18):2759–2767, available from: PM:24585776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Movat HZ, Weiser WJ, Glynn MF, Mustard JF (1965) Platelet phagocytosis and aggregation. J Cell Biol 27(3):531–543, available from: PM:4957257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nachman RL, Rafii S (2008) Platelets, petechiae, and preservation of the vascular wall. N Engl J Med 359(12):1261–1270 available from: PM:18799560

    Google Scholar 

  • Nagareddy P, Smyth SS (2013) Inflammation and thrombosis in cardiovascular disease. Curr Opin Hematol 20(5):457–463, available from: PM:23892572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neels JG, Olefsky JM (2006) Inflamed fat: what starts the fire? J Clin Invest 116(1):33–35, available from: PM:16395402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nesbitt WS, Giuliano S, Kulkarni S, Dopheide SM, Harper IS, Jackson SP (2003) Intercellular calcium communication regulates platelet aggregation and thrombus growth. J Cell Biol 160(7):1151–1161, available from: PM:12668663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Netea MG, Joosten LA, van der Meer JW, Kullberg BJ, van de Veerdonk FL (2015) Immune defence against Candida fungal infections. Nat Rev Immunol 15(10):630–642, available from: PM:26388329

    Article  CAS  PubMed  Google Scholar 

  • Nieswandt B, Pleines I, Bender M (2011) Platelet adhesion and activation mechanisms in arterial thrombosis and ischaemic stroke. J Thromb Haemost 9(Suppl 1):92–104, available from: PM:21781245

    Article  CAS  PubMed  Google Scholar 

  • Noisakran S, Gibbons RV, Songprakhon P, Jairungsri A, Ajariyakhajorn C, Nisalak A, Jarman RG, Malasit P, Chokephaibulkit K, Perng GC (2009) Detection of dengue virus in platelets isolated from dengue patients. Southeast Asian J Trop Med Public Health 40(2):253–262, available from: PM:19323010

    CAS  PubMed  Google Scholar 

  • Nomura S, Ozaki Y, Ikeda Y (2008) Function and role of microparticles in various clinical settings. Thromb Res 123(1):8–23, available from: PM:18667228

    Article  CAS  PubMed  Google Scholar 

  • Nurden AT (2011) Platelets, inflammation and tissue regeneration. Thromb Haemost 105(Suppl 1):S13–S33, available from: PM:21479340

    Article  CAS  PubMed  Google Scholar 

  • Ostrovsky L, King AJ, Bond S, Mitchell D, Lorant DE, Zimmerman GA, Larsen R, Niu XF, Kubes P (1998) A juxtacrine mechanism for neutrophil adhesion on platelets involves platelet-activating factor and a selectin-dependent activation process. Blood 91(8):3028–3036, available from: PM:9531616

    CAS  PubMed  Google Scholar 

  • Piccardoni P, Evangelista V, Piccoli A, de Gaetano G, Walz A, Cerletti C (1996) Thrombin-activated human platelets release two NAP-2 variants that stimulate polymorphonuclear leukocytes. Thromb Haemost 76(5):780–785 available from: PM:8950790

    Google Scholar 

  • Pitchford SC, Momi S, Baglioni S, Casali L, Giannini S, Rossi R, Page CP, Gresele P (2008) Allergen induces the migration of platelets to lung tissue in allergic asthma. Am J Respir Crit Care Med 177(6):604–612, available from: PM:18096710

    Article  CAS  PubMed  Google Scholar 

  • Projahn D, Koenen RR (2012) Platelets: key players in vascular inflammation. J Leukoc Biol 92:1167–1175 available from: PM:22923486

    Google Scholar 

  • Provost P (2016) Platelets enrich their transcriptome circle. Blood 127(9):1080–1081, available from: PM:26941389

    Article  CAS  PubMed  Google Scholar 

  • Qian K, Xie F, Gibson AW, Edberg JC, Kimberly RP, Wu J (2008) Functional expression of IgA receptor FcalphaRI on human platelets. J Leukoc Biol 84(6):1492–1500, available from: PM:18784345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez GA, Franchini S, Rovere-Querini P, Sabbadini MG, Manfredi AA, Maugeri N (2012) The role of platelets in the pathogenesis of systemic sclerosis. Front Immunol 3:160, available from: PM:22719739

    Article  PubMed  PubMed Central  Google Scholar 

  • Rendu F, Brohard-Bohn B (2001) The platelet release reaction: granules’ constituents, secretion and functions. Platelets 12(5):261–273, available from: PM:11487378

    Article  CAS  PubMed  Google Scholar 

  • Romo GM, Dong JF, Schade AJ, Gardiner EE, Kansas GS, Li CQ, McIntire LV, Berndt MC, Lopez JA (1999) The glycoprotein Ib-IX-V complex is a platelet counterreceptor for P-selectin. J Exp Med 190(6):803–814, available from: PM:10499919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rondina MT, Garraud O (2014) Emerging evidence for platelets as immune and inflammatory effector cells. Front Immunol 5:653, available from: PM:25566264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rondina MT, Weyrich AS, Zimmerman GA (2013) Platelets as cellular effectors of inflammation in vascular diseases. Circ Res 112(11):1506–1519, available from: PM:23704217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossaint J, Herter JM, Van AH, Napirei M, Doring Y, Weber C, Soehnlein O, Zarbock A (2014) Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation. Blood 123(16):2573–2584, available from: PM:24335230

    Article  CAS  PubMed  Google Scholar 

  • Ruggeri ZM (2003) Von Willebrand factor, platelets and endothelial cell interactions. J Thromb Haemost 1(7):1335–1342, available from: PM:12871266

    Article  CAS  PubMed  Google Scholar 

  • Sabrkhany S, Griffioen AW, Oude Egbrink MG (2011) The role of blood platelets in tumor angiogenesis. Biochim Biophys Acta 1815(2):189–196, available from: PM:21167916

    CAS  PubMed  Google Scholar 

  • Sakata D, Yao C, Narumiya S (2010) Emerging roles of prostanoids in T cell-mediated immunity. IUBMB Life 62(8):591–596 available from: PM:20665621

    Google Scholar 

  • Salter JW, Krieglstein CF, Issekutz AC, Granger DN (2001) Platelets modulate ischemia/reperfusion-induced leukocyte recruitment in the mesenteric circulation. Am J Physiol Gastrointest Liver Physiol 281(6):G1432–G1439, available from: PM:11705748

    CAS  PubMed  Google Scholar 

  • Santoso S, Sachs UJ, Kroll H, Linder M, Ruf A, Preissner KT, Chavakis T (2002) The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1. J Exp Med 196(5):679–691, available from: PM:12208882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheld WM, Sande MA (1995) Endocarditis and intravascular infections. In: Mandel GL, Bennet JE, Dolin R (eds) Principles and practice of infectious diseases, 5th edn. Churchill Livingstone, New York, pp 740–782

    Google Scholar 

  • Scheld WM, Valone JA, Sande MA (1978) Bacterial adherence in the pathogenesis of endocarditis. Interaction of bacterial dextran, platelets, and fibrin. J Clin Invest 61(5):1394–1404, available from: PM:659601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schober A, Manka D, von Hundelshausen HP, Huo Y, Hanrath P, Sarembock IJ, Ley K, Weber C (2002) Deposition of platelet RANTES triggering monocyte recruitment requires P-selectin and is involved in neointima formation after arterial injury. Circulation 106(12):1523–1529 available from: PM:12234959

    Google Scholar 

  • Sehgal S, Storrie B (2007) Evidence that differential packaging of the major platelet granule proteins von Willebrand factor and fibrinogen can support their differential release. J Thromb Haemost 5(10):2009–2016, available from: PM:17650077

    Article  CAS  PubMed  Google Scholar 

  • Semple JW (2013) Platelets deliver small packages of genetic function. Blood 122(2):155–156, available from: PM:23847185

    Article  CAS  PubMed  Google Scholar 

  • Semple JW, Freedman J (2010) Platelets and innate immunity. Cell Mol Life Sci 67(4):499–511, available from: PM:20016997

    Article  CAS  PubMed  Google Scholar 

  • Semple JW, Italiano JE Jr, Freedman J (2011) Platelets and the immune continuum. Nat Rev Immunol 11(4):264–274, available from: PM:21436837

    Article  CAS  PubMed  Google Scholar 

  • Sharma B, Sharma M, Majumder M, Steier W, Sangal A, Kalawar M (2007) Thrombocytopenia in septic shock patients--a prospective observational study of incidence, risk factors and correlation with clinical outcome. Anaesth Intensive Care 35(6):874–880, available from: PM:18084977

    CAS  PubMed  Google Scholar 

  • Shashkin PN, Brown GT, Ghosh A, Marathe GK, McIntyre TM (2008) Lipopolysaccharide is a direct agonist for platelet RNA splicing. J Immunol 181(5):3495–3502, available from: PM:18714022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi G, Field DJ, Ko KA, Ture S, Srivastava K, Levy S, Kowalska MA, Poncz M, Fowell DJ, Morrell CN (2014) Platelet factor 4 limits Th17 differentiation and cardiac allograft rejection. J Clin Invest 124(2):543–552, available from: PM:24463452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiraki R, Inoue N, Kawasaki S, Takei A, Kadotani M, Ohnishi Y, Ejiri J, Kobayashi S, Hirata K, Kawashima S, Yokoyama M (2004) Expression of Toll-like receptors on human platelets. Thromb Res 113(6):379–385, available from: PM:15226092

    Article  CAS  PubMed  Google Scholar 

  • Simon DI, Chen Z, Xu H, Li CQ, Dong J, McIntire LV, Ballantyne CM, Zhang L, Furman MI, Berndt MC, Lopez JA (2000) Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med 192(2):193–204, available from: PM:10899906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singbartl K, Green SA, Ley K (2000) Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure. FASEB J 14(1):48–54, available from: PM:10627279

    CAS  PubMed  Google Scholar 

  • Slaba I, Wang J, Kolaczkowska E, McDonald B, Lee WY, Kubes P (2015) Imaging the dynamic platelet-neutrophil response in sterile liver injury and repair in mice. Hepatology 62(5):1593–1605 available from: PM:26202541

    Google Scholar 

  • Smyth SS, McEver RP, Weyrich AS, Morrell CN, Hoffman MR, Arepally GM, French PA, Dauerman HL, Becker RC (2009) Platelet functions beyond hemostasis. J Thromb Haemost 7(11):1759–1766, available from: PM:19691483

    Article  CAS  PubMed  Google Scholar 

  • Soga F, Katoh N, Inoue T, Kishimoto S (2007a) Serotonin activates human monocytes and prevents apoptosis. J Invest Dermatol 127(8):1947–1955, available from: PM:17429435

    Article  CAS  PubMed  Google Scholar 

  • Soga F, Katoh N, Kishimoto S (2007b) Histamine prevents apoptosis in human monocytes. Clin Exp Allergy 37(3):323–330, available from: PM:17359382

    Article  CAS  PubMed  Google Scholar 

  • Soong L, Xu JC, Grewal IS, Kima P, Sun J, Longley BJ Jr, Ruddle NH, McMahon-Pratt D, Flavell RA (1996) Disruption of CD40-CD40 ligand interactions results in an enhanced susceptibility to Leishmania amazonensis infection. Immunity 4(3):263–273, available from: PM:8624816

    Article  CAS  PubMed  Google Scholar 

  • Speth C, Rambach G, Lass-Florl C (2014) Platelet immunology in fungal infections. Thromb Haemost 112(4):632–639, available from: PM:24990293

    Article  PubMed  Google Scholar 

  • Sprague DL, Elzey BD, Crist SA, Waldschmidt TJ, Jensen RJ, Ratliff TL (2008) Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood 111(10):5028–5036, available from: PM:18198347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreeramkumar V, Adrover JM, Ballesteros I, Cuartero MI, Rossaint J, Bilbao I, Nacher M, Pitaval C, Radovanovic I, Fukui Y, McEver RP, Filippi MD, Lizasoain I, Ruiz-Cabello J, Zarbock A, Moro MA, Hidalgo A (2014) Neutrophils scan for activated platelets to initiate inflammation. Science 346(6214):1234–1238, available from: PM:25477463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava K, Cockburn IA, Swaim A, Thompson LE, Tripathi A, Fletcher CA, Shirk EM, Sun H, Kowalska MA, Fox-Talbot K, Sullivan D, Zavala F, Morrell CN (2008) Platelet factor 4 mediates inflammation in experimental cerebral malaria. Cell Host Microbe 4(2):179–187, available from: PM:18692777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stahl AL, Svensson M, Morgelin M, Svanborg C, Tarr PI, Mooney JC, Watkins SL, Johnson R, Karpman D (2006) Lipopolysaccharide from enterohemorrhagic Escherichia coli binds to platelets through TLR4 and CD62 and is detected on circulating platelets in patients with hemolytic uremic syndrome. Blood 108(1):167–176, available from: PM:16514062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stasi R, Cooper N, Del PG, Stipa E, Laura EM, Abruzzese E, Amadori S (2008) Analysis of regulatory T-cell changes in patients with idiopathic thrombocytopenic purpura receiving B cell-depleting therapy with rituximab. Blood 112(4):1147–1150, available from: PM:18375792

    Article  CAS  PubMed  Google Scholar 

  • Strauss R, Wehler M, Mehler K, Kreutzer D, Koebnick C, Hahn EG (2002) Thrombocytopenia in patients in the medical intensive care unit: bleeding prevalence, transfusion requirements, and outcome. Crit Care Med 30(8):1765–1771, available from: PM:12163790

    Article  PubMed  Google Scholar 

  • Swaim AF, Field DJ, Fox-Talbot K, Baldwin WM III, Morrell CN (2010) Platelets contribute to allograft rejection through glutamate receptor signaling. J Immunol 185(11):6999–7006, available from: PM:20962257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura N, Kobayashi S, Kato K, Bando H, Haruta K, Oyanagi M, Kuriyama M, Kipps TJ, Hashimoto H (2001) Soluble CD154 in rheumatoid arthritis: elevated plasma levels in cases with vasculitis. J Rheumatol 28(12):2583–2590, available from: PM:11764201

    CAS  PubMed  Google Scholar 

  • Tanguay JF, Bell AD, Ackman ML, Bauer RD, Cartier R, Chan WS, Douketis J, Roussin A, Schnell G, Verma S, Wong G, Mehta SR (2013) Focused 2012 update of the Canadian Cardiovascular Society guidelines for the use of antiplatelet therapy. Can J Cardiol 29(11):1334–1345 available from: PM:23978596

    Google Scholar 

  • Taub DD, Conlon K, Lloyd AR, Oppenheim JJ, Kelvin DJ (1993) Preferential migration of activated CD4+ and CD8+ T cells in response to MIP-1 alpha and MIP-1 beta. Science 260(5106):355–358, available from: PM:7682337

    Article  CAS  PubMed  Google Scholar 

  • Thomas MR, Storey RF (2015) The role of platelets in inflammation. Thromb Haemost 114(3):449–458, available from: PM:26293514

    Article  PubMed  Google Scholar 

  • Toscano N, Holtzclaw D (2008) Surgical considerations in the use of platelet-rich plasma. Compend Contin Educ Dent 29(3):182–185, available from: PM:18468304

    PubMed  Google Scholar 

  • Tran DQ (2012) TGF-beta: the sword, the wand, and the shield of FOXP3(+) regulatory T cells. J Mol Cell Biol 4(1):29–37, available from: PM:22158907

    Article  CAS  PubMed  Google Scholar 

  • Tsujimoto M, Doi T, Kuroyanagi G, Yamamoto N, Matsushima-Nishiwaki R, Iida Y, Enomoto Y, Iida H, Ogura S, Otsuka T, Tokuda H, Kozawa O, Iwama T (2015) alphaB-crystallin reduces ristocetininduced soluble CD40 ligand release in human platelets: suppression of thromboxane A2 generation. Mol Med Rep 12(1):357–362 available from: PM:25760062

    Google Scholar 

  • van den Boogaard FE, Schouten M, de Stoppelaar SF, Roelofs JJ, Brands X, Schultz MJ, van't Veer C, van der Poll T (2015) Thrombocytopenia impairs host defense during murine Streptococcus pneumoniae pneumonia. Crit Care Med 43(3):e75–e83, available from: PM:25627210

    Article  PubMed  CAS  Google Scholar 

  • Vanderschueren S, De WA, Malbrain M, Vankersschaever D, Frans E, Wilmer A, Bobbaers H (2000) Thrombocytopenia and prognosis in intensive care. Crit Care Med 28(6):1871–1876, available from: PM:10890635

    Article  CAS  PubMed  Google Scholar 

  • Vasina EM, Cauwenberghs S, Feijge MA, Heemskerk JW, Weber C, Koenen RR (2011) Microparticles from apoptotic platelets promote resident macrophage differentiation. Cell Death Dis 2, e211, available from: PM:21956548

    Article  CAS  PubMed  Google Scholar 

  • Verschoor A, Langer HF (2013) Crosstalk between platelets and the complement system in immune protection and disease. Thromb Haemost 110(5):910–919, available from: PM:24008927

    Article  CAS  PubMed  Google Scholar 

  • Verschoor A, Neuenhahn M, Navarini AA, Graef P, Plaumann A, Seidlmeier A, Nieswandt B, Massberg S, Zinkernagel RM, Hengartner H, Busch DH (2011) A platelet-mediated system for shuttling blood-borne bacteria to CD8alpha + dendritic cells depends on glycoprotein GPIb and complement C3. Nat Immunol 12(12):1194–1201, available from: PM:22037602

    Article  CAS  PubMed  Google Scholar 

  • Vieira-de-Abreu A, Campbell RA, Weyrich AS, Zimmerman GA (2012) Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol 34(1):5–30, available from: PM:21818701

    Article  CAS  PubMed  Google Scholar 

  • Vinter DW, Burkel WE, Wakefield TW, Graham LM, Whitehouse WM Jr, Stanley JC, Ford JW (1984) Radioisotope-labeled platelet studies and infection of vascular grafts. J Vasc Surg 1(6):921 available from: PM:6436517

    Google Scholar 

  • von Hundelshausen HP, Weber KS, Huo Y, Proudfoot AE, Nelson PJ, Ley K, Weber C (2001) RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation 103(13):1772–1777 available from: PM:11282909

    Google Scholar 

  • Wang Y, Sakuma M, Chen Z, Ustinov V, Shi C, Croce K, Zago AC, Lopez J, Andre P, Plow E, Simon DI (2005) Leukocyte engagement of platelet glycoprotein Ibalpha via the integrin Mac-1 is critical for the biological response to vascular injury. Circulation 112(19):2993–3000, available from: PM:16260637

    CAS  PubMed  Google Scholar 

  • Ward JR, Bingle L, Judge HM, Brown SB, Storey RF, Whyte MK, Dower SK, Buttle DJ, Sabroe I (2005) Agonists of toll-like receptor (TLR)2 and TLR4 are unable to modulate platelet activation by adenosine diphosphate and platelet activating factor. Thromb Haemost 94(4):831–838, available from: PM:16270639

    PubMed  Google Scholar 

  • Weber C, Springer TA (1997) Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of Mac-1 with fibrinogen bound to alphaIIbbeta3 and stimulated by platelet-activating factor. J Clin Invest 100(8):2085–2093, available from: PM:9329974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weyrich AS (2014) Platelets: more than a sack of glue. Hematology Am Soc Hematol Educ Program 2014(1):400–403 available from: PM:25696885

    Google Scholar 

  • Weyrich AS, Zimmerman GA (2004) Platelets: signaling cells in the immune continuum. Trends Immunol 25(9):489–495, available from: PM:15324742

    Article  CAS  PubMed  Google Scholar 

  • Weyrich AS, McIntyre TM, McEver RP, Prescott SM, Zimmerman GA (1995) Monocyte tethering by P-selectin regulates monocyte chemotactic protein-1 and tumor necrosis factor-alpha secretion. Signal integration and NF-kappa B translocation. J Clin Invest 95(5):2297–2303, available from: PM:7537762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weyrich AS, Elstad MR, McEver RP, McIntyre TM, Moore KL, Morrissey JH, Prescott SM, Zimmerman GA (1996) Activated platelets signal chemokine synthesis by human monocytes. J Clin Invest 97(6):1525–1534, available from: PM:8617886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weyrich AS, Prescott SM, Zimmerman GA (2002) Platelets, endothelial cells, inflammatory chemokines, and restenosis: complex signaling in the vascular play book. Circulation 106(12):1433–1435, available from: PM:12234942

    Article  PubMed  Google Scholar 

  • Weyrich AS, Lindemann S, Zimmerman GA (2003) The evolving role of platelets in inflammation. J Thromb Haemost 1(9):1897–1905, available from: PM:12941029

    Article  CAS  PubMed  Google Scholar 

  • Weyrich AS, Schwertz H, Kraiss LW, Zimmerman GA (2009) Protein synthesis by platelets: historical and new perspectives. J Thromb Haemost 7(2):241–246, available from: PM:18983498

    Article  CAS  PubMed  Google Scholar 

  • Wong CH, Jenne CN, Petri B, Chrobok NL, Kubes P (2013) Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nat Immunol 14(8):785–792, available from: PM:23770641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Furie BC, Furie B (1999) The biology of P-selectin glycoprotein ligand-1: its role as a selectin counterreceptor in leukocyte-endothelial and leukocyte-platelet interaction. Thromb Haemost 81(1):1–7, available from: PM:10348699

    CAS  PubMed  Google Scholar 

  • Yang D, Chen Q, Hoover DM, Staley P, Tucker KD, Lubkowski J, Oppenheim JJ (2003) Many chemokines including CCL20/MIP-3alpha display antimicrobial activity. J Leukoc Biol 74(3):448–455, available from: PM:12949249

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Wang H, Zhang M, Liu J, Lv B, Chen F (2015) HMGB1: a novel protein that induced platelets active and aggregation via Toll-like receptor-4, NF-kappaB and cGMP dependent mechanisms. Diagn Pathol 10:134, available from: PM:26245198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yeaman MR (2010) Platelets in defense against bacterial pathogens. Cell Mol Life Sci 67(4):525–544, available from: PM:20013024

    Article  CAS  PubMed  Google Scholar 

  • Yeaman MR (2014) Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol 12(6):426–437, available from: PM:24830471

    Article  CAS  PubMed  Google Scholar 

  • Yeaman MR, Norman DC, Bayer AS (1992) Platelet microbicidal protein enhances antibiotic-induced killing of and postantibiotic effect in Staphylococcus aureus. Antimicrob Agents Chemother 36(8):1665–1670, available from: PM:1416849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youssefian T, Drouin A, Masse JM, Guichard J, Cramer EM (2002) Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation. Blood 99(11):4021–4029, available from: PM:12010803

    Article  CAS  PubMed  Google Scholar 

  • Zaldivar MM, Pauels K, von Hundelshausen HP, Berres ML, Schmitz P, Bornemann J, Kowalska MA, Gassler N, Streetz KL, Weiskirchen R, Trautwein C, Weber C, Wasmuth HE (2010) CXC chemokine ligand 4 (Cxcl4) is a platelet-derived mediator of experimental liver fibrosis. Hepatology 51(4):1345–1353 available from: PM:20162727

    Google Scholar 

  • Zarbock A, Ley K (2009) The role of platelets in acute lung injury (ALI). Front Biosci (Landmark Ed) 14:150–158 available from: PM:19273059

    Google Scholar 

  • Zarbock A, Singbartl K, Ley K (2006) Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation. J Clin Invest 116(12):3211–3219, available from: PM:17143330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarbock A, Polanowska-Grabowska RK, Ley K (2007) Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev 21(2):99–111, available from: PM:16987572

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Yang Y (2012) Microparticles are the basic storage units for different proteins in platelet granules. Blood available from: PM:22829627

    Google Scholar 

  • Zhang G, Han J, Welch EJ, Ye RD, Voyno-Yasenetskaya TA, Malik AB, Du X, Li Z (2009) Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol 182(12):7997–8004, available from: PM:19494325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Liu Y, Gao Y, Dong J, Mu C, Lu Q, Shao N, Yang G (2011) Inhibiting platelets aggregation could aggravate the acute infection caused by Staphylococcus aureus. Platelets 22(3):228–236, available from: PM:21265599

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Li W, Silverstein RL (2012) Advanced glycation end products induce a prothrombotic phenotype in mice via interaction with platelet CD36. Blood 119(25):6136–6144, available from: PM:22431576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Huang Z, Stalesen R, Hansson GK, Li N (2014) Platelets provoke distinct dynamics of immune responses by differentially regulating CD4+ T-cell proliferation. J Thromb Haemost 12(7):1156–1165, available from: PM:24833264

    Article  CAS  PubMed  Google Scholar 

  • Zufferey A, Fontana P, Reny JL, Nolli S, Sanchez JC (2012) Platelet proteomics. Mass Spectrom Rev 31(2):331–351, available from: PM:22009795

    Article  CAS  PubMed  Google Scholar 

  • Zufferey A, Schvartz D, Nolli S, Reny JL, Sanchez JC, Fontana P (2014) Characterization of the platelet granule proteome: evidence of the presence of MHC1 in alpha-granules. J Proteomics 101:130–140, available from: PM:24549006

    Article  CAS  PubMed  Google Scholar 

  • Zwicker JI, Trenor CC III, Furie BC, Furie B (2011) Tissue factor-bearing microparticles and thrombus formation. Arterioscler Thromb Vasc Biol 31(4):728–733, available from: PM:21252066

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Kubes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Slaba, I., Kubes, P. (2017). Platelets and Immunity. In: Gresele, P., Kleiman, N., Lopez, J., Page, C. (eds) Platelets in Thrombotic and Non-Thrombotic Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-47462-5_34

Download citation

Publish with us

Policies and ethics