Skip to main content

Cognition-Enhanced, Self-optimizing Assembly Systems

  • Chapter
  • First Online:
Integrative Production Technology

Abstract

Due to shorter product lifecycles and a rising demand for customization, flexibility and adaptability of assembly processes will become key elements in achieving sustainable success of industrial production in high-wage countries. Cognition-enhanced self-optimization as presented in this chapter has been identified as one major contributor to the enhancement of this flexibility and adaptability. The proposed approach to realize cognition-enhanced self-optimization for assembly systems in a broad range of application domains is to integrate dynamic behavior allowing reactions on disturbances and unforeseen events by dynamically adapting the target objectives of internal control loops. Unlike the approach of traditional closed control loops in which target objectives of an optimization process are determined in advance, this approach defines goal functions as dynamically adaptable throughout the process. The chapter concludes with two application examples—one dealing with the assembly of large-scale components (airplane structures) and the other with small component assembly (micro-optical elements)—presented to illustrate the industrial deployment of self-optimization for assembly tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The MicroSlab laser is a miniaturized laser for marking and engraving applications.

References

  • Abele E, Reinhart G (2011) Zukunft der Produktion: Herausforderungen, Forschungsfelder. Chancen, Hanser, Carl, München

    Book  Google Scholar 

  • Adelt P, Donoth J, Gausemeier J, Geisler J, Henkler S, Kahl S, Klöpper B (2008) Selbstoptimierende Systeme des Maschinenbaus: Definitionen, Anwendungen, Konzepte, vol 234. HNI-Verlagsschriftenreihe

    Google Scholar 

  • Allf S, Detert T, Ingenlath P (2015) Aktive Verformung und Montage von flexiblen Bauteilen mit einem Mehrarm-Robotersystem. In: Bertram T (ed) Fachtagung Mechatronik: Dortmund (12.03.2015–13.03.2015. Inst. für Getriebetechnik und Maschinendynamik ˜[u.a.]œ, Aachen, pp 191–196

    Google Scholar 

  • Aster RC, Borchers B, Thurber CH (2013) Parameter estimation and inverse problems, 2nd edn. Academic Press, Waltham

    MATH  Google Scholar 

  • Auerbach T, Beckers M, Buchholz G, Eppelt U, Gloy Y, Fritz P, Khawli T, Kratz S, Lose J, Molitor T, Reßmann A, Thombansen U, Veselovac D, Willms K, Gries T, Michaeli W, Hopmann C, Reisgen U, Schmitt R, Klocke F (2011) Meta-modeling for manufacturing processes. In: Jeschke S, Honghai H, Schilberg D (eds) Intelligent robotics and applications: 4th international conference, ICIRA 2011, Aachen, Germany, 6–8 Dec 2011; proceedings, part II, Part II. Springer, Berlin, pp 199–209

    Chapter  Google Scholar 

  • Bachmann F, Loosen P, Poprawe R (2007) High power diode lasers: technology and applications. Springer series in optical sciences, vol 128. Springer, New York

    Google Scholar 

  • Barringer HP (2003) A life cycle cost summary. In: International conference on maintenance societies, May, pp 20–23

    Google Scholar 

  • Basak K, Bahl RK, Sharma P, Banik A (2015) Demonstration of active laser beam stabilization in closed loop for free space optical receiver. In: Lakshminarayanan V, Bhattacharya I (eds) Advances in Optical Science and Engineering, vol 166. Springer India, New Delhi, pp 217–225

    Chapter  Google Scholar 

  • Başar Y, Krätzig WB (2000) Theory of shell structures. Fortschritt-Berichte VDI, vol 18. VDI-Verlag, Dusseldorf

    Google Scholar 

  • Borrmann C, Brencher T, Ramirez J, Wollnack J (2013) Robot fertigt Flugzeugteile. http://www.computer-automation.de/steuerungsebene/steuernregeln/fachwissen/article/94679/1/Roboter_fertigt_Flugzeugteile/. Accessed 1 Feb 2013

  • Böttcher C, Hüttemann G, Janßen M, Kartarius B, Lewerenz T, Ottong A, Peterek M, Schmitt R, Wehn M, Wurl S (2014) Präzisionsfertigung und—montage von Großbauteilen. In: Werkzeugmaschinenkolloquium Aachener (ed) Brecher C. Verlag, Shaker, pp 403–426

    Google Scholar 

  • Brecher C (2011) Integrative Produktionstechnik für Hochlohnländer. Springer, Heidelberg

    Book  Google Scholar 

  • Brecher C, Kloke F, Schmitt R, Schuh G (eds) (2011) Wettbewerbsfaktor Produktionstechnik: Aachener Perspektiven: Aachener Werkzeugmaschinenkolloquium 2011, 1. Aufl. Aachener Perspektiven, Shaker, Herzogenrath

    Google Scholar 

  • Brecher C, Pyschny N, Haag S, Guerrero Lule V (2012a) Automated alignment of optical components for high-power diode lasers. In: Zediker MS (ed) SPIE LASE, vol 82410. SPIE

    Google Scholar 

  • Brecher C, Schmitt R, Loosen P, Guerrero V, Pyschny N, Pavim A, Gatej A (2012b) Self-optimizing approach for automated laser resonator alignment. Opt Lasers Eng 50(2):287–292. doi:10.1016/j.optlaseng.2011.08.001

    Article  Google Scholar 

  • Brecher C, Pyschny N, Haag S, Mueller T (2013) Automated assembly of VECSEL components. In: Hastie JE (ed) SPIE LASE (VECSELs): Vertical External Cavity Surface Emitting Lasers, vol 86060. SPIE

    Google Scholar 

  • Bryant RL (2006) Geometry of manifolds with special holonomy: 100 years of holonomy. In: Jensen G, Krantz S (eds) 150 years of mathematics at Washington University in St. Louis, vol 395. American Mathematical Society, Providence, Rhode Island, pp 29–38

    Google Scholar 

  • Cisek R, Habicht C, Neise P (2002) Gestaltung wandlungsfähiger Produktionssysteme. ZWF—Zeitschrift für wirtschaftlichen Fabrikbetrieb 97(9):441–445

    Google Scholar 

  • Deblaise D, Hernot X, Maurine P (2006) A systematic analytical method for PKM stiffness matrix calculation. In: IEEE (ed) ICRA—robotics and automation, pp 4213–4219

    Google Scholar 

  • Demeester F, Dresselhaus M, Essel I, Jatzkowski P, Nau M, Pause B, Plapper PW, Schmitt R, Schönberg A, Voss H (2011) Referenzsysteme für wandlungsfähige Produktion. In: Brecher C, Kloke F, Schmitt R, Schuh G (eds) Wettbewerbsfaktor Produktionstechnik: Aachener Werkzeugmaschinenkolloquium, 1st edn. Shaker, Herzogenrath, pp 449–475

    Google Scholar 

  • Detert T, Corves B (2016) Extended Procedure for Stiffness Modeling Based on the Matrix Structure Analysis. In: Corves B, Lovasz E, Hüsing M, Maniu I, Gruescu C (eds) New advances in mechanisms, mechanical transmissions and robotics: Proceedings of The Joint International Conference of the XII International Conference on Mechanisms and Mechanical Transmissions (MTM) and the XXIII International Conference on Robotics (Robotics ’16), vol 46. Springer, Cham, pp 299–310

    Google Scholar 

  • Detert T, Mannheim T, Hüsing M, Corves B (2013) Improving the accuracy of a multi-arm-robot-system by parameter identification of the single arms. KEM 613:428–439. doi:10.4028/www.scientific.net/KEM.613.428

    Article  Google Scholar 

  • DIN (1996) Roboter und Robotikgeräte—Wörterbuch (ISO/DIS 8373:2010)(8373)

    Google Scholar 

  • DIN (2005) Laser und Laseranlagen—Prüfverfahren für Laserstrahlabmessungen, Divergenzwinkel und Beugungsmaßzahlen—Teil 2: Allgemein astigmatische Strahlen(11146–2:2005)

    Google Scholar 

  • Dong L, Liu W, Yang P, Xu B, Lei X, Ning Y, Yan H (2011) A simple method for automatic cavity alignment of a solid-state laser. Optics Communications 284(7):2003–2006. doi:10.1016/j.optcom.2010.12.047

    Article  Google Scholar 

  • Dong L, Liu W, Yang P, Wang S, He X, Xu B (2015) Automatic online laser resonator alignment based on machine vision: analysis. In: Beyerer J, Puente León F (eds) Optical metrology, vol 95300. SPIE

    Google Scholar 

  • Ellis BN (1989) Safety and environmental problems of cleaning printed circuit assemblies. Circuit World 16(1):4–7. doi:10.1108/eb046062

    Article  Google Scholar 

  • Engmann K (ed) (2008) Technologie des Flugzeuges, 4th edn. Fachbuch. Vogel, Würzburg

    Google Scholar 

  • Ferri C, Mastrogiacomo L, Faraway J (2010) Sources of variability in the set-up of an indoor GPS. Int J Comput Integr Manuf 23(6):487–499. doi:10.1080/09511921003642147

    Article  Google Scholar 

  • Fong NHB (2005) Modeling, analysis, and design of responsive manufacturing systems using classical control theory. Ph.D thesis, Virginia Polytechnic Institute and State University

    Google Scholar 

  • Fuchs W (2012) Produktion und logistik in deutschland 2025. Trends, Tendenzen, Schlussfolgerungen. Studie der VDI-Gesellschaft Produktion und Logistik, Düsseldorf

    Google Scholar 

  • Gaertner C, Bluemel V, Hoefer B, Kraeplin A, Possner T, Schreiber P (2000) Assembly processes for micro-optical beam transformation systems for high-power diode laser bars and stacks. In: Motamedi ME, Goering R (eds) Micromachining and Microfabrication. SPIE, pp 149–155

    Google Scholar 

  • Garcia-Molina H (2008) Database systems: the complete book. Pearson Education, India

    Google Scholar 

  • Gausemeier J, Plass C (2014) Zukunftsorientierte Unternehmensgestaltung: Strategien, Geschäftsprozesse und IT-Systeme für die Produktion von morgen, 2nd revised edn. Hanser, Munich

    Book  Google Scholar 

  • German Machine Tool Builders’ Association (2013) The German Machine Tool Industry in 2012

    Google Scholar 

  • Goldfarb M, Celanovic N (1997) Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Control Syst Mag 17(3):69–79. doi:10.1109/37.588158

    Article  MATH  Google Scholar 

  • Gross H (2005) Handbook of optical systems: fundamentals of technical optics, vol 1. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Haag S, Schranner M, Müller T, Zontar D, Schlette C, Losch D, Brecher C, Roßmann J (2015) Minimal-effort planning of active alignment processes for beam-shaping optics. In: Kudryashov AV, Paxton AH, Ilchenko VS, Aschke L, Washio K (eds) SPIE LASE. SPIE, p 93430W

    Google Scholar 

  • Hall D (1989) The physics and technology of laser. CRC Press, Institute of Physics Publishing, New York

    Google Scholar 

  • Hansen RC (2002) Overall equipment effectiveness: a powerful production/maintenance tool for increased profits, 1st edn. Industrial Press, New York

    Google Scholar 

  • Haun M (2013) Handbuch Robotik: Programmieren und Einsatz intelligenter Roboter, 2nd edn. VDI-Buch. Imprint, Springer Vieweg, Berlin, Heidelberg

    Book  Google Scholar 

  • Hayek FA (1945) The use of knowledge in society. Am Econ Rev 35(4):519–530. (American Economic Association)

    Google Scholar 

  • Heilala J, Montonen J, Väätäinen O (2008) Life cycle and unit-cost analysis for modular reconfigurable flexible light assembly systems. J Eng Manuf 222(10):1289–1299. doi:10.1243/09544054JEM1034

    Article  Google Scholar 

  • Henderson SW, Yuen EH, Fry ES (1986) Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers. Opt Lett 11(11):715–717

    Article  Google Scholar 

  • Hesselbach J, Raatz A, Wrege J (2003) MikroPRO. Untersuchung zum internationalen Stand der Mikroproduktionstechnik. wt Werkstattstechnik online 93(3):119–128

    Google Scholar 

  • Hommel G, Heiß H (1990) Roboterkinematik. Technische bericht des Fachbereichs Informatik, Technische Universität Berlin (15):1–118

    Google Scholar 

  • Hvisc AM, Burge JH (2008) Astronomical Telescopes and Instrumentation: Synergies Between Ground and Space. In: Atad-Ettedgui E, Lemke D (eds) SPIE, vol 12, p 701819

    Google Scholar 

  • IFAM (2015) Jahresbericht—Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung: 2014/2015. http://www.ifam.fraunhofer.de/content/dam/ifam/de/documents/Jahresberichte/Jahresbericht2014_fraunhofer_ifam.pdf

  • Jayaram S, Connacher HI, Lyons KW (1997) Virtual assembly using virtual reality techniques. Comput Aided Des 29(8):575–584. doi:10.1016/S0010-4485(96)00094-2

    Article  Google Scholar 

  • Jurecka F (2007) Robust design optimization based on metamodeling techniques. Shaker, Aachen

    Google Scholar 

  • Kagermann H, Wahlster W, Helbig J (2013) Deutschlands zukunft als produktionsstandort sichern: Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0. Abschlussbericht des Arbeitskreises Industrie 4

    Google Scholar 

  • Karioja P, Ollila J, Putila V, Keranen K, Hakkila J, Kopola H (2000) Comparison of active and passive fiber alignment techniques for multimode laser pigtailing. In: IEEE (ed) Electronic components &amp, Piscataway, NJ, pp 244–249

    Google Scholar 

  • Kim S, Yang H, Lee Y, Kim S (2007) Merit function regression method for efficient alignment control of two-mirror optical systems. Opt Express 15(8):5059–5068. doi:10.1364/OE.15.005059

    Article  Google Scholar 

  • Kim Y, Yang H, Song J, Kim S, Lee Y (2013) Modeling alignment experiment errors for improved computer-aided alignment. J Opt Soc Korea 17(6):525–532. doi:10.3807/JOSK.2013.17.6.525

    Article  Google Scholar 

  • Kleijnen JP, Sargent RG (2000) A methodology for fitting and validating metamodels in simulation. Eur J Oper Res 120(1):14–29. doi:10.1016/S0377-2217(98)00392-0

    Article  MATH  Google Scholar 

  • Knowles J, Nakayama H (2008) Meta-modeling in multiobjective optimization. In: Branke J (ed) Multiobjective optimization: interactive and evolutionary approaches, vol 5252. Springer-Verlag, Berlin, pp 245–284

    Chapter  Google Scholar 

  • Koeppe R, Engelhardt D, Hagenauer A, Heiligensetzer P, Kneifel B, Knipfer A, Stoddard K (2005) Robot-robot and human-robot cooperation in commercial robotics applications. In: Siciliano B, Khatib O, Dario P, Chatila R (eds) Robotics research. the eleventh international symposium, vol 15. Springer, Berlin, pp 202–216

    Google Scholar 

  • Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge, Mass, Complex adaptive systems

    MATH  Google Scholar 

  • Krappig R, Schmitt R (2015) Wellenfrontbasierte aktive Justage mehrkomponentiger optischer Systeme. In: Fröhlich T (ed) XXIX. Messtechnisches Symposium. De Gruyter Oldenbourg, Berlin, Boston, Mass., pp 1–10

    Google Scholar 

  • Ku RT (2004) Automated packaging platform for low-cost high-performance optical components manufacturing. In: Chang-Hasnain CJ, Huang D, Nakano Y, Ren X (eds) Asia-Pacific optical and wireless communications. SPIE, pp 424–428

    Google Scholar 

  • Kurilova-Palisaitiene J, Permin E, Mannheim T, Buhse K, Schmitt R, Corves B, Björkman M (2016) Industrial energy efficiency potentials: an assessment of three different robot concepts

    Google Scholar 

  • Kurtenbach S, Kochniss M, Cousin A, Corves B (2013) Development of a pneumatic end-effector for a 3-DOF robotic local structure. In: Petuya V, Pinto C, Lovasz E (eds) New advances in mechanisms, transmissions and applications, vol 17., SpringerNetherlands, Dordrecht, pp 285–292

    Chapter  Google Scholar 

  • Kurtenbach S, Hüsing M, Corves B (2015) Modular System with Varying Contact Elements for a Reconfigurable Parallel Robot. In: Bai S, Ceccarelli M (eds) Recent advances in mechanism design for robotics: proceedings of the 3rd IFToMM symposium on mechanism design for robotics, vol 33. Springer, pp 307–315

    Google Scholar 

  • Kurth J (2005) Flexible Produktionssysteme durch kooperierende Roboter: Industrieroboter Automatisierung. wt Werkstattstechnik online 95(3):81–84

    Google Scholar 

  • Lang R (2000) Technologiekombination durch Modularisierung. Dissertation

    Google Scholar 

  • Lao DB, Zhou WH, Zhang ZL, Yang XY, Zhu JG (2012) Calibration of large scale coordinate measuring system based on scanning laser plane. AMR 503–504:1270–1275. doi:10.4028/www.scientific.net/AMR.503-504.1270

    Article  Google Scholar 

  • Latyev SM, Smirnov AP, Voronin AA, Padun BS, Yablochnikov EI, Frolov DN, Tabachkov AG, Theska R, Zocher P (2009) The concept of an automatic assembly line for microscope objectives, based on adaptive selection of their components. J Opt Technol 76(7):436. doi:10.1364/JOT.76.000436

    Article  Google Scholar 

  • Latyev SM, Smirnov AP, Frolov DN, Tabachkov AG, Theska R (2010) Providing target performance indices when automating the assembly of microscope objectives. J Opt Technol 77(1):38. doi:10.1364/JOT.77.000038

    Article  Google Scholar 

  • Lau D (2007) Algebra und Diskrete Mathematik 1: Grundbegriffe der Mathematik, Algebraische Strukturen 1, Lineare algebra und analytische geometrie, numerische algebra, 2nd edn. Springer-Verlag, Berlin Heidelberg, Berlin, Heidelberg, Springer

    Google Scholar 

  • Lee AS (1998) High-powered laser diode transmitter with integrated microlens for fast axis collimation. In: Feldman MR, Lee Y (eds) Optoelectronics and high-power lasers & applications. SPIE, pp 33–42

    Google Scholar 

  • Li Y, Bone GM (2001) Are parallel manipulators more energy efficient? In: Zhang H (eds) IEEE international symposium on computational intelligence in robotics and automation: integrated intelligent machines with humans for a better tomorrow. IEEE, [Piscataway, N.J.], pp 41–46

    Google Scholar 

  • Lingner H, Westrup K (2014) 40 Jahre VW Golf Generationen Auto im Wandel. http://www.auto-motor-und-sport.de/news/40-jahre-vw-golf-generationen-auto-im-wandel-8577144.html. Accessed 30 Oct 2015

  • Liu Z, Xu Y, Liu Z, Wu J (2010) A large scale 3D positioning method based on a network of rotating laser automatic theodolites. In: IEEE (ed) International Conference on Information and Automation (ICIA), Piscataway, NJ, pp 513–518

    Google Scholar 

  • Ljungberg Õ (1998) Measurement of overall equipment effectiveness as a basis for TPM activities. Int J Op Prod Manage 18(5):495–507. doi:10.1108/01443579810206334

    Article  Google Scholar 

  • Loosen P, Schmitt R, Brecher C, Müller R, Funck M, Gatej A, Morasch V, Pavim A, Pyschny N (2011) Self-optimizing assembly of laser systems. Prod Eng Res Dev 5(4):443–451. doi:10.1007/s11740-011-0328-8

    Article  Google Scholar 

  • Maisano DA, Jamshidi J, Franceschini F, Maropoulos PG, Mastrogiacomo L, Mileham AR, Owen GW (2008) Indoor GPS: system functionality and initial performance evaluation. Int J Manuf Res 3(3):335–349

    Article  Google Scholar 

  • Mannheim T, Riedel M, Hüsing M, Corves B (2013) A new way of grasping: PARAGRIP—the fusion of gripper and robot. In: Carbone G (ed) Grasping in robotics, vol 10., SpringerLondon, New York, pp 433–464

    Chapter  Google Scholar 

  • Mcguire W (2000) Matrix structural analysis: MASTRAN2. Wiley, New York

    Google Scholar 

  • Mertin M, Schulte B, Kujawinska M, Anania G, Lombaers J (eds) (2013) Towards 2020: photonics driving economic growth in Europe. Multiannual Strategic Roadmap 2014–2020

    Google Scholar 

  • Miesner J, Timmermann A, Meinschien J, Neumann B, Wright S, Tekin T, Schröder H, Westphalen T, Frischkorn F (2009) Automated assembly of fast-axis collimation (FAC) lenses for diode laser bar modules. In: Zediker MS (ed) LASE: Lasers and applications in science and engineering. SPIE, p 71980G-71980G-11

    Google Scholar 

  • Mooring B, Roth ZS, Driels MR (1991) Fundamentals of manipulator calibration. Wiley, New York

    Google Scholar 

  • Muelaner JE, Wang Z, Martin O, Jamshidi J, Maropoulos PG (2012) Verification of the indoor GPS system, by comparison with calibrated coordinates and by angular reference. J Intell Manuf 23(6):2323–2331. doi:10.1007/s10845-010-0488-y

    Article  Google Scholar 

  • Müller J (1997) Entwicklung eines Expertensystems zur Auswahl von Greifern. Dissertation, RWTH Aachen

    Google Scholar 

  • Müller R, Eilers J, Esser M (2011) Wandlungsfähigkeit in der Montage: chance für eine schwer planbare Zukunft. In: Brecher C, Kloke F, Schmitt R, Schuh G (eds) Wettbewerbsfaktor Produktionstechnik: Aachener Werkzeugmaschinenkolloquium, 1st edn. Shaker, Herzogenrath, pp 423–447

    Google Scholar 

  • Norman AR, Schönberg A, Gorlach IA, Schmitt R (2013) Validation of iGPS as an external measurement system for cooperative robot positioning. Int J Adv Manuf Technol 64(1–4):427–446. doi:10.1007/s00170-012-4004-8

    Article  Google Scholar 

  • Nowotny S, Scharek S, Kempe F, Förster M, Schmidt A (2003) Präzisionsauftragschweißen mit laserbasierten hybriden Fertigungsverfahren: Stand der Arbeiten im Verbundprojekt Fertigungsintegration von hybriden Auftragschweißverfahren zum Oberflächenschutz und zur Bauteilreparatur (FAVOR). Werkstattstechnik (11)

    Google Scholar 

  • Oteo E, Arasa J (2013) New strategy for misalignment calculation in optical systems using artificial neural networks. Opt Eng 52(7):74105. doi:10.1117/1.OE.52.7.074105

    Article  Google Scholar 

  • Overton G, Belforte DA, Nogee A, Holton C (2015) Laser market place 2015. Laser surround us in the year of light. laser focus world 51(1):32−+

    Google Scholar 

  • Parker DH (2008) Multidirectional retroreflectors. Grant(USRE41877 E1)

    Google Scholar 

  • Peggs GN, Maropoulos PG, Hughes EB, Forbes AB, Robson S, Ziebart M, Muralikrishnan B (2009) Recent developments in large-scale dimensional metrology: proceedings of the institution of mechanical engineers. J Eng Manuf 223(6):571–595. doi:10.1243/09544054JEM1284

  • Permin E, Fuhrmann M, Grunert D, Schmitt R (2015a) Self-optimization for complex multi-dimensional optimization tasks in manufacturing scheduling. In: International conference on virtual machining process technology. Proceedings

    Google Scholar 

  • Permin E, Hoffmann M, Bertelsmeier F, Haag S, Detert T, Schmitt R (2015b) cognitive self-optimization in industrial assembly. 5. WGP-Jahreskongress

    Google Scholar 

  • Pham DT, Eldukhri EE, Peat B, Setchi R, Soroka A, Packianather MS, Thomas A, Dadam Y, Dimov S (2004) Innovative production machines and systems (I*PROMS): A network of excellence funded by the EU sixth framework programme. In: IEEE (ed) International Conference on Industrial Informatics, pp 540–544

    Google Scholar 

  • Pierer J, Lützelschwab M, Grossmann S, Spinola Durante G, Bosshard C, Valk B, Brunner R, Bättig R, Lichtenstein N (2011) Automated assembly processes of high power single emitter diode lasers for 100 W in 105 μm/NA 0.15 fiber module. In: Zediker MS (ed) LASE. SPIE, pp 79180I–79180I-8

    Google Scholar 

  • Possner T, Messerschmidt B, Kraeplin A, Bluemel V, Hoefer B, Schreiber P (2000) Assembly of fast-axis collimating lenses with high-power laser diode bars. In: Feldman MR, Li RL, Matkin WB, Tang S (eds) Symposium on integrated optoelectronics, vol 3952. SPIE, pp 392–399

    Google Scholar 

  • Probst G (1987) Selbst-organisation: Ordnungsprozesse in sozialen Systemen aus ganzheitlicher Sicht. Biologie und Evolution interdisziplinär. P, Parey, Berlin

    Google Scholar 

  • Pütsch O, Morasch V, Funck M, Loosen P (2011) Echtzeitfähige Laserstrahlregelung zur Kompensation thermischer Effekte

    Google Scholar 

  • Rahami H (2010) Matrix structural analysis: a simple function for the analysis of two- and three-dimensional frame structures. File exchange. http://www.mathworks.com/matlabcentral/fileexchange/27012-matrix-structural-analysis. Accessed 13 Oct 2010

  • Rall K, Quellmalz W (2004) Großbauteil-montage mit system: Automatisiertes Konzept erleichtert Handling größerer Objekte. A&D Newsletter 143–145

    Google Scholar 

  • Riedel M (2014) Flexible Bauteilhandhabung auf Basis einer rekonfigurierbaren parallelkinematischen Struktur. Dissertation, RWTH Aachen

    Google Scholar 

  • Riedel M, Nefzi M, Corves B (2010) Grasp planning for a reconfigurable parallel robot with an underactuated arm structure

    Google Scholar 

  • Roelant GJ, Kemppainen AJ, Shonnard DR (2004) Assessment of the automobile assembly paint process for energy, environmental, and economic improvement. J Ind Ecol 8(1–2):173–191. doi:10.1162/1088198041269355

    Google Scholar 

  • Schmitt R (2014a) Industrie 4.0. Konzept der resilienten Fabrik. In: Brecher C (ed) Aachener Werkzeugmaschinenkolloquium. Shaker Verlag

    Google Scholar 

  • Schmitt R (2014b) Präzisionsfertigung und Montage von Großbauteilen. In: Brecher C (ed) Integrative Produktion: Industrie 4.0. Aachener Perspektiven. Shaker, Aachen, pp 403–426

    Google Scholar 

  • Schmitt R, Permin E (2013) Characterization of future key performance indicators and constraints for self-optimizing assembly systems. In: Schmitt R (ed) ISMTII—international symposium on measurement technology and intelligent instruments: metrology, master global challenges. 1. ed. Apprimus-Verl., Aachen

    Google Scholar 

  • Schmitt R, Pavim A, Brecher C, Pyschny N, Loosen P, Funck M, Dolkemeyer J, Morasch V (2008) Flexibel automatisierte Montage von Festkörperlasern: Auf dem Weg zur flexiblen Montage mittels kooperierender Roboter und Sensorfusion. wt Werkstattstechnik online 11:955–960

    Google Scholar 

  • Schmitt R, Permin E, Losse S (2013) Achieving resource-and energy-efficient system optima for production chains using cognitive self-optimization. In: Seliger G (ed) Sustainable manufacturing: innovative solutions proceedings: Proceedings. Univ.-Verl., Berlin, pp 519–524

    Google Scholar 

  • Schmitt R, Permin E, Fuhrmann M (2014a) Cognitive self-optimization for quality control loops—potentials and future challenges in research. In: Merklein M, Franke J, Hagenah H (eds) WGP congress: progress in production engineering. Selected, peer reviewed papers, vol 1018, pp 477–484

    Google Scholar 

  • Schmitt R, Witte A, Janßen M, Bertelsmeier F (2014b) Metrology assisted assembly of airplane structure elements. Procedia CIRP 23:116–121. doi:10.1016/j.procir.2014.10.073

    Article  Google Scholar 

  • Schwake K, Wulfsberg J (2014) Robot-based system for handling of aircraft shell parts. Procedia CIRP 23:104–109. doi:10.1016/j.procir.2014.10.081

    Article  Google Scholar 

  • Steinke P (2010) Finite-Elemente-Methode: Rechnergestützte Einführung, 5., bearb. u. erg. Aufl. 2015. SpringerLink: Bücher. Springer, Berlin

    Google Scholar 

  • Stepanek P, Rall K, Wulfsberg J (2007) Flexibel automatisierte Montage von leicht verformbaren großvolumigen Bauteilen. Dissertation, TU Hamburg

    Google Scholar 

  • The Airbus Company (2002) Eco-efficiency and sustainability. Whitepaper der Airbus Academy. www.airbus.com

  • Tsai RY, Lenz RK (1989) A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Trans Robot Automat 5(3):345–358. doi:10.1109/70.34770

    Article  Google Scholar 

  • VDI 2884 (2005) Beschaffung, Betrieb und Instandhaltung von Produktionsmitteln unter Anwendung von Life Cycle Costing (LCC)

    Google Scholar 

  • Westkämper E, Osten-Sacken D (1998) Product life cycle costing applied to manufacturing systems. CIRP Ann—Manuf Technol 47(1):353–356. doi:10.1016/S0007-8506(07)62849-2

    Article  Google Scholar 

  • Westphalen T (2013) Algorithmen zur automatisierten Justage mikrooptischer Komponenten, 1st. Berichte aus der Lasertechnik, Shaker, Aachen

    Google Scholar 

  • Wollnack J, Stepanek P (2004a) Formkorrektur und Lageführung für eine flexible und automatisierte Großbauteilmontage. wt Werkstattstechnik online 94(9):414–421

    Google Scholar 

  • Wollnack J, Stepanek P (2004b) Iterativ lernende Verfahren in der Großbauteilmontage. wt Werkstattstechnik online 94(10):572–579

    Google Scholar 

  • Wollnack J, Rall K, Quellmalz W (2001) Flexibilisierte, automatisierte Großbauteilmontage: Videometrische Messverfahren im Hinblick auf die flexibilisierte und automatisierte Flugzeugmontage. wt Werkstattstechnik online 91(12):785–791

    Google Scholar 

  • Womack JP, Jones DT (2007) och Roos D, The machine that changed the world

    Google Scholar 

  • Woodward DG (1997) Life cycle costing—Theory, information acquisition and application. Int J Project Manage 15(6):335–344. doi:10.1016/S0263-7863(96)00089-0

    Article  Google Scholar 

  • Xiong Z, Zhu JG, Zhao ZY, Yang XY, Ye SH (2012) Workspace measuring and positioning system based on rotating laser planes. Mechanics 18(1). doi:10.5755/j01.mech.18.1.1289

  • Yang L, Yang X, Zhu J, Muqiong D, Lao D (2010) Novel method for spatial angle measurement based on rotating planar laser beams. Chin J Mech Eng 23(06):1–7

    Google Scholar 

  • Yang LH, Wang Y, Zhu JG, Yang XY (2012) Distributed optical sensor network with self-monitoring mechanism for accurate indoor location and coordinate measurement. AMM 190–191:972–976. doi:10.4028/www.scientific.net/AMM.190-191.972

    Article  Google Scholar 

  • Ystgaard P, Gjerstad TB, Lien TK, Nyen PA (2012) Mapping energy consumption for industrial robots. In: Dornfeld DA, Linke BS (eds) Leveraging technology for a sustainable world. Springer, Berlin, pp 251–256

    Chapter  Google Scholar 

  • Ziebart JR (2012) Ein konstruktionsmethodischer Ansatz zur Funktionsintegration, 1st ed. Bericht/Institut für Konstruktionstechnik, Technische Universität Braunschweig, vol 83. Verl. Dr. Hut, Munich

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Schmitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schmitt, R. et al. (2017). Cognition-Enhanced, Self-optimizing Assembly Systems. In: Brecher, C., Özdemir, D. (eds) Integrative Production Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47452-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47452-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47451-9

  • Online ISBN: 978-3-319-47452-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics