Skip to main content

Fifty Years of Physics of Living Systems

  • Chapter
  • First Online:
Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 957))

Abstract

The equilibrium-point hypothesis and its more recent version, the referent configuration hypothesis, represent the physical approach to the neural control of action. This hypothesis can be naturally combined with the idea of hierarchical control of movements and of synergic organization of the abundant systems involved in all actions. Any action starts with defining trajectories of a few referent coordinates for a handful of salient task-specific variables. Further, referent coordinates at hierarchically lower levels emerge down to thresholds of the tonic stretch reflex for the participating muscles. Stability of performance with respect to salient variables is reflected in the structure of inter-trial variance and phenomena of motor equivalence. Three lines of recent research within this framework are reviewed. First, synergic adjustments of the referent coordinate and apparent stiffness have been demonstrated during finger force production supporting the main idea of control with referent coordinates. Second, the notion of unintentional voluntary movements has been introduced reflecting unintentional drifts in referent coordinates. Two types of unintentional movements have been observed with different characteristic times. Third, this framework has been applied to studies of impaired movements in neurological patients. Overall, the physical approach searching for laws of nature underlying biological movement has been highly stimulating and productive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambike S, Paclet F, Zatsiorsky VM, Latash ML (2014) Factors affecting grip force: anatomy, mechanics, and referent configurations. Exp Brain Res 232:1219–1231

    Article  PubMed  PubMed Central  Google Scholar 

  • Ambike S, Zatsiorsky VM, Latash ML (2015a) Processes underlying unintentional finger force changes in the absence of visual feedback. Exp Brain Res 233:711–721

    Google Scholar 

  • Ambike S, Zhou T, Zatsiorsky VM, Latash ML (2015b) Moving a hand-held object: reconstruction of referent coordinate and apparent stiffness trajectories. Neurosci 298:336–356

    Google Scholar 

  • Ambike S, Mattos D, Zatsiorsky VM, Latash ML (2016a) The nature of constant and cyclic force production: unintentional force-drift characteristics. Exp Brain Res 234:197–208

    Google Scholar 

  • Ambike S, Mattos D, Zatsiorsky VM, Latash ML (2016b) Synergies in the space of control variables within the equilibrium-point hypothesis. Neurosci 315:150–161

    Google Scholar 

  • Archambault PS, Mihaltchev P, Levin MF, Feldman AG (2005) Basic elements of arm postural control analyzed by unloading. Exp Brain Res 164:225–241

    Article  PubMed  Google Scholar 

  • Asatryan DG, Feldman AG (1965) Functional tuning of the nervous system with control of movements or maintenance of a steady posture. I. Mechanographic analysis of the work of the limb on execution of a postural task. Biophysics 10:925–935

    Google Scholar 

  • Augurelle AS, Smith AM, Lejeune T, Thonnard JL (2003) Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J Neurophysiol 89:665–671

    Article  PubMed  Google Scholar 

  • Bernstein NA (1967) The co-ordination and regulation of movements. Pergamon Press, Oxford

    Google Scholar 

  • Bernstein NA, Kots YM (1963) Tone. Grand Medical Encyclopaedia, vol 32. State Encyclopaedia, Moscow, pp 418–422

    Google Scholar 

  • Bizzi E, Polit A, Morasso P (1976) Mechanisms underlying achievement of final head position. J Neurophysiol 39:435–444

    CAS  PubMed  Google Scholar 

  • Calota A, Levin MF (2009) Tonic stretch reflex threshold as a measure of spasticity: implications for clinical practice. Top Stroke Rehab 16:177–188

    Article  Google Scholar 

  • Corcos DM, Gottlieb GL, Penn RD, Myklebust B, Agarwal GC (1986) Movement deficits caused by hyperexcitable stretch reflexes in spastic humans. Brain 109:1043–1058

    Article  PubMed  Google Scholar 

  • d’Avella A, Saltiel P, Bizzi E (2003) Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci 6:300–308

    Article  PubMed  Google Scholar 

  • DeWald JP, Pope PS, Given JD, Buchanan TS, Rymer WZ (1995) Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain 118:495–510

    Article  PubMed  Google Scholar 

  • DiZio P, Lackner JR (1995) Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm. J Neurophysiol 74:1787–1792.

    Google Scholar 

  • Fahn S, Jankovic J (2007) Principles and practice of movement disorders. Churchill Livingstone Elsevier, Philadelphia, PA, USA

    Google Scholar 

  • Falaki A, Huang X, Lewis MM, Latash ML (2016) Impaired synergic control of posture in Parkinson’s patients without postural instability. Gait Posture 44:209–215

    Article  PubMed  Google Scholar 

  • Feldman AG (1966a) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II Controllable parameters of the muscle. Biophysics 11:565–578

    Google Scholar 

  • Feldman AG (1966b) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. III. Mechanographic analysis of execution by man of the simplest motor task. Biophysics 11:667–675

    CAS  Google Scholar 

  • Feldman AG (1980) Superposition of motor programs. I Rhythmic forearm movements in man. Neurosci 5:81–90

    Article  CAS  Google Scholar 

  • Feldman AG (1986) Once more on the equilibrium-point hypothesis (λ-model) for motor control. J Mot Behav 18:17–54

    Article  CAS  PubMed  Google Scholar 

  • Feldman AG (2015) Referent control of action and perception: challenging conventional theories in behavioral science. Springer, NY

    Book  Google Scholar 

  • Feldman AG, Latash ML (2005) Testing hypotheses and the advancement of science: recent attempts to falsify the equilibrium-point hypothesis. Exp Brain Res 161:91–103

    Article  PubMed  Google Scholar 

  • Gelfand IM (1991) Two archetypes in the psychology of man. Nonlinear Sci Today 1:11–16

    Google Scholar 

  • Gelfand IM, Latash ML (1998) On the problem of adequate language in movement science. Mot Control 2:306–313

    Article  CAS  Google Scholar 

  • Gottlieb GL (1998) Rejecting the equilibrium-point hypothesis. Mot Control 2:10–12

    Article  CAS  Google Scholar 

  • Gribble PL, Ostry DJ, Sanguineti V, Laboissiere R (1998) Are complex control signals required for human arm movements? J Neurophysiol 79:1409–1424

    CAS  PubMed  Google Scholar 

  • Hammond PH (1955) Involuntary activity in biceps following the sudden application of velocity to the abducted forearm. J Physiol 127:23P–25P

    Article  Google Scholar 

  • Hinder MR, Milner TE (2003) The case for an internal dynamics model versus equilibrium point control in human movement. J Physiol 549:953–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    Article  CAS  PubMed  Google Scholar 

  • Houk JC (2005) Agents of the mind. Biol Cybern 92:427–437

    Article  PubMed  Google Scholar 

  • Ivanenko YP, Poppele RE, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556:267–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo HJ, Park J, Lewis MM, Huang X, Latash ML (2015) Prehension synergies and hand function in early-stage Parkinson’s disease. Exp Brain Res 233:425–440

    Article  PubMed  Google Scholar 

  • Jo HJ, Mattos D, Lukassen EB, Huang X, Latash ML (2016a) Changes in multi-digit synergies and their feed-forward adjustments in multiple sclerosis. J Mot Behav (in press) e-pub: PMID: 27715488

    Google Scholar 

  • Jo HJ, Maenza C, Good DC, Huang X, Park J, Sainburg RL, Latash ML (2016b) Effects of unilateral stroke on multi-finger synergies and their feed-forward adjustments. Neurosci 319:194–205

    Article  CAS  Google Scholar 

  • Karniel A (2011) Open questions in computational motor control. J Integr Neurosci 10:385–411

    Article  PubMed  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    Article  CAS  PubMed  Google Scholar 

  • Kelso JA, Holt KG (1980) Exploring a vibratory systems analysis of human movement production. J Neurophysiol 43:1183–1196

    CAS  PubMed  Google Scholar 

  • Lackner JR, DiZio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol 72:1–15

    Google Scholar 

  • Landau WM (1974) Spasticity: the fable of a neurological demon and the emperor’s new therapy. Arch Neurol 31:217–219

    Article  CAS  PubMed  Google Scholar 

  • Latash ML (1992) Virtual trajectories, joint stiffness, and changes in natural frequency during single-joint oscillatory movements. Neurosci 49:209–220

    Article  CAS  Google Scholar 

  • Latash ML (2008) Synergy. Oxford University Press, New York

    Book  Google Scholar 

  • Latash ML (2012) The bliss (not the problem) of motor abundance (not redundancy). Exp Brain Res 217:1–5

    Article  PubMed  PubMed Central  Google Scholar 

  • Latash ML, Gottlieb GL (1990) Compliant characteristics of single joints: preservation of equifinality with phasic reactions. Biol Cybern 62:331–336

    Article  CAS  PubMed  Google Scholar 

  • Latash ML, Gottlieb GL (1991) Reconstruction of elbow joint compliant characteristics during fast and slow voluntary movements. Neurosci 43:697–712

    Article  CAS  Google Scholar 

  • Latash ML, Huang X (2015) Neural control of movement stability: lessons from studies of neurological patients. Neurosci 301:39–48

    Article  CAS  Google Scholar 

  • Latash ML, Levin MF, Scholz JP, Schöner G (2010) Motor control theories and their applications. Medicina 46:382–392

    PubMed  PubMed Central  Google Scholar 

  • Latash ML, Penn RD (1996) Changes in voluntary motor control induced by intrathecal baclofen. Physiother Res Intern 1:229–246

    Article  CAS  Google Scholar 

  • Latash ML, Scholz JP, Schöner G (2002) Motor control strategies revealed in the structure of motor variability. Exerc Sport Sci Rev 30:26–31

    Article  PubMed  Google Scholar 

  • Latash ML, Scholz JP, Schöner G (2007) Toward a new theory of motor synergies. Mot Control 11:276–308

    Article  Google Scholar 

  • Latash ML, Penn RD, Corcos DM, Gottlieb GL (1990) Effects of intrathecal baclofen on voluntary motor control in spastic paresis. J Neurosurg 72:388–392

    Article  CAS  PubMed  Google Scholar 

  • Latash ML, Shim JK, Smilga AV, Zatsiorsky V (2005) A central back-coupling hypothesis on the organization of motor synergies: a physical metaphor and a neural model. Biol Cybern 92:186–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Latash ML, Zatsiorsky VM (2016) Biomechanics and motor control: defining central concepts. Academic Press, NY

    Google Scholar 

  • Lawrence EL, Fassola I, Werner I, Leclercq C, Valero-Cuevas FJ. (2014) Quantification of dexterity as the dynamical regulation of instabilities: comparisons across gender, age, and disease. Front Neurol 5:53

    Google Scholar 

  • Levin MF, Feldman AG (1994) The role of stretch reflex threshold regulation in normal and impaired motor control. Brain Res 657:23–30

    Article  CAS  PubMed  Google Scholar 

  • Martin V, Scholz JP, Schöner G (2009) Redundancy, self-motion, and motor control. Neural Comput 21:1371–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin JR, Zatsiorsky VM, Latash ML (2011) Multi-finger interaction during involuntary and voluntary single finger force changes. Exp Brain Res 208:423–435

    Article  CAS  PubMed  Google Scholar 

  • Mattos D, Latash ML, Park E, Kuhl J, Scholz JP (2011) Unpredictable elbow joint perturbation during reaching results in multijoint motor equivalence. J Neurophysiol 106:1424–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattos D, Kuhl J, Scholz JP, Latash ML (2013) Motor equivalence (ME) during reaching: Is ME observable at the muscle level? Mot Control 17:145–175

    Article  Google Scholar 

  • Mattos D, Schöner G, Zatsiorsky VM, Latash ML (2015) Task-specific stability of abundant systems: structure of variance and motor equivalence. Neurosci 310:600–615

    Article  CAS  Google Scholar 

  • Müller H, Sternad D (2003) A randomization method for the calculation of covariation in multiple nonlinear relations: illustrated with the example of goal-directed movements. Biol Cybern 89:22–33

    PubMed  Google Scholar 

  • Musampa NK, Mathieu PA, Levin MF (2007) Relationship between stretch reflex thresholds and voluntary arm muscle activation in patients with spasticity. Exp Brain Res 181:579–593

    Article  PubMed  Google Scholar 

  • Olafsdottir H, Yoshida N, Zatsiorsky VM, Latash ML (2005) Anticipatory covariation of finger forces during self-paced and reaction time force production. Neurosci Lett 381:92–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Wu Y-H, Lewis MM, Huang X, Latash ML (2012) Changes in multi-finger interaction and coordination in Parkinson’s disease. J Neurophysiol 108:915–924

    Article  PubMed  PubMed Central  Google Scholar 

  • Park J, Lewis MM, Huang X, Latash ML (2013) Effects of olivo-ponto-cerebellar atrophy (OPCA) on finger interaction and coordination. Clin Neurophysiol 124:991–998

    Article  PubMed  Google Scholar 

  • Park J, Lewis MM, Huang X, Latash ML (2014) Dopaminergic modulation of motor coordination in Parkinson’s disease. Parkinson Rel Disord 20:64–68

    Article  Google Scholar 

  • Popescu FC, Rymer WZ (2000) End points of planar reaching movements are disrupted by small force pulses: an evaluation of the hypothesis of equifinality. J Neurophysiol 84:2670–2679

    CAS  PubMed  Google Scholar 

  • Prablanc C, Desmurget M, Gréa H (2003) Neural control of on-line guidance of hand reaching movements. Prog Brain Res 142:155–170

    Article  PubMed  Google Scholar 

  • Prilutsky BI, Zatsiorsky VM (2002) Optimization-based models of muscle coordination. Exer Sport Sci Rev 30:32–38

    Article  Google Scholar 

  • Qiao M, Zhou T, Latash ML (2015) Positional errors introduced by transient perturbations applied to a multi-joint limb. Neurosci Lett 595:104–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raptis H, Burtet L, Forget R, Feldman AG (2010) Control of wrist position and muscle relaxation by shifting spatial frames of reference for motoneuronal recruitment: possible involvement of corticospinal pathways. J Physiol 588:1551–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reisman D, Scholz JP (2003) Aspects of joint coordination are preserved during pointing in persons with post-stroke hemiparesis. Brain 126:2510–2527

    Article  PubMed  Google Scholar 

  • Reschechtko S, Zatsiorsky VM, Latash ML (2014) Stability of multi-finger action in different spaces. J Neurophysiol 112:3209–3218

    Article  PubMed  PubMed Central  Google Scholar 

  • Reschechtko S, Zatsiorsky VM, Latash ML (2015) Task-specific stability of multi-finger steady-state action. J Mot Behav 47:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Sangani SG, Raptis HA, Feldman AG (2011) Subthreshold corticospinal control of anticipatory actions in humans. Behav Brain Res 224:145–154

    Article  PubMed  Google Scholar 

  • Schmidt RA, McGown C (1980) Terminal accuracy of unexpected loaded rapid movements: evidence for a mass-spring mechanism in programming. J Mot Behav 12:149–161

    Article  CAS  PubMed  Google Scholar 

  • Scholz JP, Schöner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306

    Article  CAS  PubMed  Google Scholar 

  • Schöner G (1995) Recent developments and problems in human movement science and their conceptual implications. Ecol Psychol 8:291–314

    Article  Google Scholar 

  • Schrödinger E (1948) What is life? The physical aspect of the living cell. Cambridge University Press, Cambridge

    Google Scholar 

  • Shadmehr R, Wise SP (2005) The computational neurobiology of reaching and pointing. MIT Press, Cambridge, MA

    Google Scholar 

  • Shapkova EYu, Shapkova AL, Goodman SR, Zatsiorsky VM, Latash ML (2008) Do synergies decrease force variability? A study of single-finger and multi-finger force production. Exp Brain Res 188:411–425

    Article  PubMed  PubMed Central  Google Scholar 

  • Shemmell J, Krutky MA, Perreault EJ (2010) Stretch sensitive reflexes as an adaptive mechanism for maintaining limb stability. Clin Neurophysiol 121:1680–1689

    Article  PubMed  PubMed Central  Google Scholar 

  • Shim JK, Olafsdottir H, Zatsiorsky VM, Latash ML (2005) The emergence and disappearance of multi-digit synergies during force production tasks. Exp Brain Res 164:260–270

    Article  PubMed  PubMed Central  Google Scholar 

  • Slifkin AB, Vaillancourt DE, Newell KM (2000) Intermittency in the control of continuous force production. J Neurophysiol 84:1708–1718

    CAS  PubMed  Google Scholar 

  • Tatton WG, Bawa P, Bruce IC, Lee RG (1978) Long loop reflexes in monkeys: an interpretive base for human reflexes. Prog Clin Neurophysiol 4:229–245

    Google Scholar 

  • Ting LH, Macpherson JM (2005) A limited set of muscle synergies for force control during a postural task. J Neurophysiol 93:609–613

    Article  PubMed  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235

    Article  CAS  PubMed  Google Scholar 

  • Vaillancourt DE, Russell DM (2002) Temporal capacity of short-term visuomotor memory in continuous force production. Exp Brain Res 145:275–285

    Article  PubMed  Google Scholar 

  • Venkadesan M, Guckenheimer J, Valero-Cuevas FJ (2007) Manipulating the edge of instability. J Biomech 40(8):1653–1661

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilhelm L, Zatsiorsky VM, Latash ML (2013) Equifinality and its violations in a redundant system: multi-finger accurate force production. J Neurophysiol 110:1965–1973

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Wu Y-H, Bartsch A, Cuadra C, Zatsiorsky VM, Latash ML (2013) Anticipatory synergy adjustments: preparing a quick action in an unknown direction. Exp Brain Res 226:565–573

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Solnik S, Wu Y-H, Latash ML (2014) Unintentional movements produced by back-coupling between the actual and referent body configurations: violations of equifinality in multi-joint positional tasks. Exp Brain Res 232:3847–3859

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Zatsiorsky VM, Latash ML (2015a) Unintentional changes in the apparent stiffness of the multi-joint limb. Exp Brain Res 233:2989–3004

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Zhang L, Latash ML (2015b) Characteristics of unintentional movements by a multi-joint effector. J Mot Behav 47:352–361

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author would like to thank his younger colleagues who played central roles in the reviewed studies, Satyajit Ambike, Ali Falaki, Hang Jin Jo, Daniela Mattos, Florent Paclet, Jaebum Park, Mu Qiao, Sasha Reschechtko, Stanislaw Solnik, Luke Wilhelm, and Tao Zhou. Preparation of this paper was in part supported by a grant R01 NS035032 from the National Institutes of Health, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Latash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Latash, M.L. (2016). Fifty Years of Physics of Living Systems. In: Laczko, J., Latash, M. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 957. Springer, Cham. https://doi.org/10.1007/978-3-319-47313-0_5

Download citation

Publish with us

Policies and ethics