Skip to main content

Organizing and Reorganizing Coordination Patterns

  • Chapter
  • First Online:
Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 957))

Abstract

Understanding how the nervous system learns to coordinate the large number of degrees of freedom in the body to produce goal-directed movement is not only one of the central questions in theoretical movement neuroscience, but also has direct relevance for movement rehabilitation. In spite of the centrality of this issue, the literature on how a new coordination pattern is acquired and refined when first learning a novel task remains surprisingly small relative to studies that focus on modifications of already well-learned coordination patterns. In this chapter, we outline some of the reasons behind why the study of coordination continues to pose a serious challenge for movement neuroscience, particularly when it comes to systematically studying and testing hypotheses on how new coordination patterns are organized and reorganized with practice. We then describe a novel experimental paradigm—the body–machine interface (BoMI)—that has been developed and used over the last decade to examine this issue. The paradigm combines the control of a large number of degrees of freedom along with a linear mapping, which makes it appealing to examine how coordination of these high degrees of freedom is organized in a systematic fashion. Finally, we outline some of the new insights that this paradigm has provided into classic issues of motor learning such as the learning of high-dimensional spaces, generalization, and transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JA (1987) Historical review and appraisal of research on the learning, retention, and transfer of human motor skills. Psychol Bull 101:41–74

    Article  Google Scholar 

  • Adolph KE, Cole WG, Komati M, Garciaguirre JS, Badaly D, Lingeman JM, Chan GL, Sotsky RB (2012) How do you learn to walk? Thousands of steps and dozens of falls per day. Psychol Sci 23:1387–1394

    Article  PubMed  PubMed Central  Google Scholar 

  • Bastian AJ (2008) Understanding sensorimotor adaptation and learning for rehabilitation. Curr Opin Neurol 21:628–633

    Article  PubMed  PubMed Central  Google Scholar 

  • Berger DJ, Gentner R, Edmunds T, Pai DK, d’Avella A (2013) Differences in adaptation rates after virtual surgeries provide direct evidence for modularity. J Neurosci 33:12384–12394

    Article  CAS  PubMed  Google Scholar 

  • Bernstein N (1967) The coordination and regulation of movement. Pergamon Press, Oxford

    Google Scholar 

  • Biess A, Liebermann DG, Flash T (2007) A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics. J Neurosci 27:13045–13064

    Article  CAS  PubMed  Google Scholar 

  • Braun DA, Aertsen A, Wolpert DM, Mehring C (2009) Motor task variation induces structural learning. Curr Biol 19:352–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun D, Mehring C, Wolpert D (2010) Structure learning in action. Behav Brain Res 206:157–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Casadio M, Pressman A, Fishbach A, Danziger Z, Acosta S, Chen D, Tseng HY, Mussa-Ivaldi FA (2010) Functional reorganization of upper-body movement after spinal cord injury. Exp Brain Res 207:233–247

    Article  PubMed  PubMed Central  Google Scholar 

  • Casadio M, Ranganathan R, Mussa-Ivaldi FA (2012) The body-machine interface: a new perspective on an old theme. J Mot Behav 44:419–433

    Article  PubMed  PubMed Central  Google Scholar 

  • Cusumano JP, Cesari P (2006) Body-goal variability mapping in an aiming task. Biol Cybern 94:367–379

    Article  PubMed  Google Scholar 

  • d’Avella A, Saltiel P, Bizzi E (2003) Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci 6:300–308

    Article  PubMed  Google Scholar 

  • de Rugy A, Loeb GE, Carroll TJ (2013) Are muscle synergies useful for neural control? Front Comput Neurosci 7:19

    PubMed  PubMed Central  Google Scholar 

  • Farshchiansadegh A, Ranganathan R, Casadio M, Mussa-Ivaldi FA (2015) Adaptation to visual feedback delay in a redundant motor task. J Neurophysiol 113:426–433

    Article  PubMed  Google Scholar 

  • Gessell A (1946) The ontogenesis of infant behavior. In: Carmichael L (ed) Manual of child psychology. John Wiley, New York, pp 295–331

    Chapter  Google Scholar 

  • Giszter S, Patil V, Hart C (2007) Primitives, premotor drives, and pattern generation: a combined computational and neuroethological perspective. Prog Brain Res 165:323–346

    Article  PubMed  Google Scholar 

  • Heathcote A, Brown S, Mewhort DJ (2000) The power law repealed: the case for an exponential law of practice. Psychon Bull Rev 7:185–207

    Article  CAS  PubMed  Google Scholar 

  • Ivanenko YP, Poppele RE, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol (Lond) 556:267–282

    Article  CAS  PubMed Central  Google Scholar 

  • Kelso JAS (1984) Phase transitions and critical behavior in human bimanual coordination. Am J Physiol 246:R1000–R1004

    CAS  PubMed  Google Scholar 

  • Kelso JAS (1995) Dynamic patterns: the self-organization of brain and behavior. MIT Press, Cambridge

    Google Scholar 

  • Krakauer JW, Mazzoni P (2011) Human sensorimotor learning: adaptation, skill, and beyond. Curr Opin Neurobiol 21:636–644

    Article  CAS  PubMed  Google Scholar 

  • Krakauer JW, Pine ZM, Ghilardi MF, Ghez C (2000) Learning of visuomotor transformations for vectorial planning of reaching trajectories. J Neurosci 20:8916–8924

    CAS  PubMed  Google Scholar 

  • Kutch JJ, Valero-Cuevas FJ (2012) Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLoS Comput Biol 8:e1002434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langendorfer SJ, Roberton MA (2002) Individual pathways in the development of forceful throwing. Res Q Exerc Sport 73:245–256

    Article  PubMed  Google Scholar 

  • Lebedev MA, Nicolelis MA (2006) Brain-machine interfaces: past, present and future. Trends Neurosci 29:536–546

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Ranganathan R, Kagerer FA, Mukherjee R (2016) Body-machine interface for control of a screen cursor for a child with congenital absence of upper and lower limbs: a case report. J Neuroeng Rehabil 13:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Scheidt RA (2008) Contributions of online visual feedback to the learning and generalization of novel finger coordination patterns. J Neurophysiol 99:2546–2557

    Article  PubMed  Google Scholar 

  • Liu YT, Mayer-Kress G, Newell KM (2006) Qualitative and quantitative change in the dynamics of motor learning. J Exp Psychol Hum Percept Perform 32:380–393

    Article  PubMed  Google Scholar 

  • Liu X, Mosier KM, Mussa-Ivaldi FA, Casadio M, Scheidt RA (2011) Reorganization of finger coordination patterns during adaptation to rotation and scaling of a newly learned sensorimotor transformation. J Neurophysiol 105:454–473

    Article  PubMed  Google Scholar 

  • Mosier KM, Scheidt RA, Acosta S, Mussa-Ivaldi FA (2005) Remapping hand movements in a novel geometrical environment. J Neurophysiol 94:4362–4372

    Article  PubMed  Google Scholar 

  • Müller H, Sternad D (2004) Decomposition of variability in the execution of goal-oriented tasks: three components of skill improvement. J Exp Psychol Hum Percept Perform 30:212

    Article  PubMed  Google Scholar 

  • Nazarpour K, Barnard A, Jackson A (2012) Flexible cortical control of task-specific muscle synergies. J Neurosci 32:12349–12360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newell KM (1991) Motor skill acquisition. Annu Rev Psychol 42:213–237

    Article  CAS  PubMed  Google Scholar 

  • Newell A, Rosenbloom PS (1981) Mechanisms of skill acquisition and the law of practice. In: Anderson JR (ed) Cognitive skills and their acquisition. Erlbaum, Hillsdale, NJ, pp 1–55

    Google Scholar 

  • Osgood CE (1949) The similarity paradox in human learning; a resolution. Psychol Rev 56:132–143

    Article  CAS  PubMed  Google Scholar 

  • Overduin SA, d’Avella A, Roh J, Carmena JM, Bizzi E (2015) Representation of muscle synergies in the primate brain. J Neurosci 35:12615–12624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierella C, Abdollahi F, Farshchiansadegh A, Pedersen J, Thorp EB, Mussa-Ivaldi FA, Casadio M (2015) Remapping residual coordination for controlling assistive devices and recovering motor functions. Neuropsychologia 79:364–376

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranganathan R, Adewuyi A, Mussa-Ivaldi FA (2013) Learning to be lazy: exploiting redundancy in a novel task to minimize movement-related effort. J Neurosci 33:2754–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranganathan R, Wieser J, Mosier KM, Mussa-Ivaldi FA, Scheidt RA (2014) Learning redundant motor tasks with and without overlapping dimensions: facilitation and interference effects. J Neurosci 34:8289–8299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberton MA, Halverson LE, Langendorfer S, Williams K (1979) Longitudinal changes in children’s overarm throw ball velocities. Res Q 50:256–264

    CAS  PubMed  Google Scholar 

  • Santello M, Flanders M, Soechting JF (1998) Postural hand synergies for tool use. J Neurosci 18:10105–10115

    CAS  PubMed  Google Scholar 

  • Scholz JP, Schoner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306

    Article  CAS  PubMed  Google Scholar 

  • Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP (2002) Instant neural control of a movement signal. Nature 416:141–142

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Ghazizadeh A, Shadmehr R (2006) Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol 4:e179

    Article  PubMed  PubMed Central  Google Scholar 

  • Thelen E, Corbetta D, Spencer JP (1996) Development of reaching during the first year: role of movement speed. J Exp Psychol Hum Percept Perform 22:1059–1076

    Article  CAS  PubMed  Google Scholar 

  • Thorp EB, Abdollahi F, Chen D, Farshchiansadegh A, Lee MH, Pedersen JP, Pierella C, Roth EJ, Seanez Gonzalez I, Mussa-Ivaldi FA (2016) Upper body-based power wheelchair control interface for individuals with tetraplegia. IEEE Trans Neural Syst Rehabil Eng 24:249–260

    Article  PubMed  Google Scholar 

  • Ting LH, McKay JL (2007) Neuromechanics of muscle synergies for posture and movement. Curr Opin Neurobiol 17:622–628

    Article  CAS  PubMed  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235

    Article  CAS  PubMed  Google Scholar 

  • Torres EB, Zipser D (2002) Reaching to grasp with a multi-jointed arm. I. Computational model. J Neurophysiol 88:2355–2367

    PubMed  Google Scholar 

  • Torres EB, Heilman KM, Poizner H (2011) Impaired endogenously evoked automated reaching in Parkinson’s disease. J Neurosci 31:17848–17863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tresch MC, Saltiel P, Bizzi E (1999) The construction of movement by the spinal cord. Nat Neurosci 2:162–167

    Article  CAS  PubMed  Google Scholar 

  • Valero-Cuevas F, Cohn B, Yngvason H, Lawrence E (2015) Exploring the high-dimensional structure of muscle redundancy via subject-specific and generic musculoskeletal models. J Biomech 48:2887–2896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheat JS, Glazier PS (2006) Measuring coordination and variability in coordination. In: Davids K, Bennett SJ, Newell KM (eds) Movement system variability. Human Kinetics, Champaign, IL, pp 167–181

    Google Scholar 

  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113:767–791

    Article  PubMed  Google Scholar 

  • Wright ZA, Rymer WZ, Slutzky MW (2013) Reducing abnormal muscle coactivation after stroke using a myoelectric-computer interface: a pilot study. Neurorehabil Neural Repair 28:443–451

    Article  PubMed  PubMed Central  Google Scholar 

  • Zipser D, Torres E (2007) Computing movement geometry: a step in sensory-motor transformations. Prog Brain Res 165:411–424

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Ferdinando Mussa-Ivaldi for his insightful and formative discussions, which were integral to the conception and execution of each of the glove BoMI experiments described in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Scheidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Ranganathan, R., Scheidt, R.A. (2016). Organizing and Reorganizing Coordination Patterns. In: Laczko, J., Latash, M. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 957. Springer, Cham. https://doi.org/10.1007/978-3-319-47313-0_18

Download citation

Publish with us

Policies and ethics