Skip to main content

Drug Resistance Assays for Mycobacterium tuberculosis

  • Chapter
  • First Online:
Antimicrobial Drug Resistance

Abstract

Timely detection of patients harboring drug-resistant Mycobacterium tuberculosis strains is of paramount importance for effective treatment and also for preventing epidemics of drug-resistant tuberculosis. Bacteriologic methods currently in use for detection of drug resistance are the agar proportion method and the use of automated liquid medium systems. In addition, genotypic methods are increasingly employed as screening tests and complement conventional antimicrobial susceptibility testing. Accurate detection of clinically meaningful minimal inhibitory concentrations is the prerequisite for pharmacokinetic and pharmacodynamic correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canetti G. Present aspects of bacterial resistance in tuberculosis. Am Rev Respir Dis. 1965;92(5):687–703.

    CAS  PubMed  Google Scholar 

  2. World Health Organization. Global tuberculosis report. 2015.

    Google Scholar 

  3. Bastos ML, Hussain H, Weyer K, Garcia-Garcia L, Leimane V, Leung CC, et al. Treatment outcomes of patients with multidrug-resistant and extensively drug-resistant tuberculosis according to drug susceptibility testing to first- and second-line drugs: an individual patient data meta-analysis. Clin Infect Dis. 2014;59(10):1364–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Canetti G, Froman S, Grosset J, Hauduroy P, Langerova M, Mahler HT, et al. Mycobacteria: laboratory methods for testing drug sensitivity and resistance. Bull World Health Organ. 1963;29(5):565–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Canetti G, Fox W, Khomenko A, Mahler HT, Menon NK, Mitchison DA, et al. Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull World Health Organ. 1969;41(1):21–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. David HL. Fundamentals of drug susceptibility testing in tuberculosis. Atlanta, GA: Centers for Disease Control and Prevention; 1971. HEW Publication No. 00-2165.

    Google Scholar 

  7. Kent PT, Kubica GP. Public health mycobacteriology. A guide for the level III laboratory. Atlanta, GA: Centers for Disease Control and Prevention; 1985.

    Google Scholar 

  8. World Health Organization. Companion handbook to the who guidelines for the programmatic management of drug-resistant tuberculosis. 2014.

    Google Scholar 

  9. McClatchy JK, Waggoner RF, Kanes W, Cernich MS, Bolton TL. Isolation of mycobacteria from clinical specimens by use of selective 7h11 medium. Am J Clin Pathol. 1976;65(3):412–15.

    Article  CAS  PubMed  Google Scholar 

  10. McClatchy JK. Antituberculosis drugs: mechanisms of action, drug resistance, susceptibility testing and assays of activity in biological fluids. In: Lorian V, editor. Antibiotics in laboratory medicine. Baltimore: Williams and Wilkins; 1980. p. 135–69.

    Google Scholar 

  11. Madison BM, Siddiqi SH, Heifets L, Gross W, Higgins M, Warren N, et al. Identification of a mycobacterium tuberculosis strain with stable, low-level resistance to isoniazid. J Clin Microbiol. 2004;42(3):1294–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Siddiqi SH, Libonati JP, Middlebrook G. Evaluation of rapid radiometric method for drug susceptibility testing of mycobacterium tuberculosis. J Clin Microbiol. 1981;13(5):908–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Roberts GD, Goodman NL, Heifets L, Larsh HW, Lindner TH, McClatchy JK, et al. Evaluation of the BACTEC radiometric method for recovery of mycobacteria and drug susceptibility testing of Mycobacterium tuberculosis from acid-fast smear-positive specimens. J Clin Microbiol. 1983;18(3):689–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Siddiqi SH, Hawkins JE, Laszlo A. Interlaboratory drug susceptibility testing of Mycobacterium tuberculosis by a radiometric procedure and two conventional methods. J Clin Microbiol. 1985;22(6):919–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. WHO. Companion handbook to the who guidelines for the programmatic management of drug-resistant tuberculosis. 2014.

    Google Scholar 

  16. Somoskovi A, Salfinger M. The race is on to shorten the turnaround time for the diagnosis of multidrug-resistant tuberculosis. J Clin Microbiol. 2015;53(12):3715–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Somoskovi A, Dormandy J, Mitsani D, Rivenburg J, Salfinger M. Use of smear-positive samples to assess the pcr-based genotype mtbdr assay for rapid, direct detection of the Mycobacterium tuberculosis complex as well as its resistance to isoniazid and rifampin. J Clin Microbiol. 2006;44(12):4459–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Springer B, Lucke K, Calligaris-Maibach R, Ritter C, Bottger EC. Quantitative drug susceptibility testing of Mycobacterium tuberculosis by use of mgit 960 and epicenter instrumentation. J Clin Microbiol. 2009;47(6):1773–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hall L, Jude KP, Clark SL, Dionne K, Merson R, Boyer A, et al. Evaluation of the sensititre mycotb plate for susceptibility testing of the Mycobacterium tuberculosis complex against first- and second-line agents. J Clin Microbiol. 2012;50(11):3732–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cabibbe AM, Miotto P, Moure R, Alcaide F, Feuerriegel S, Pozzi G, et al. A lab-on-chip based platform for fast molecular diagnosis of multi-drug resistant tuberculosis. J Clin Microbiol. 2015;53(12):2876–3880.

    Article  Google Scholar 

  21. Rattan A, Kalia A, Ahmad N. Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives. Emerg Infect Dis. 1998;4(2):195–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Somoskovi A, Parsons LM, Salfinger M. The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir Res. 2001;2(3):164–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993;341(8846):647–50.

    Article  CAS  PubMed  Google Scholar 

  24. Chaves F, Alonso-Sanz M, Rebollo MJ, Tercero JC, Jimenez MS, Noriega AR. RpoB mutations as an epidemiologic marker in rifampin-resistant Mycobacterium tuberculosis. Int J Tuberc Lung Dis. 2000;4(8):765–70.

    CAS  PubMed  Google Scholar 

  25. Garcia L, Alonso-Sanz M, Rebollo MJ, Tercero JC, Chaves F. Mutations in the rpoB gene of rifampin-resistant Mycobacterium tuberculosis isolates in Spain and their rapid detection by PCR-enzyme-linked immunosorbent assay. J Clin Microbiol. 2001;39(5):1813–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Telenti A, Honore N, Bernasconi C, March J, Ortega A, Heym B, et al. Genotypic assessment of isoniazid and rifampin resistance in Mycobacterium tuberculosis: a blind study at reference laboratory level. J Clin Microbiol. 1997;35(3):719–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Watterson SA, Wilson SM, Yates MD, Drobniewski FA. Comparison of three molecular assays for rapid detection of rifampin resistance in Mycobacterium tuberculosis. J Clin Microbiol. 1998;36(7):1969–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rossau R, Traore H, De Beenhouwer H, Mijs W, Jannes G, De Rijk P, et al. Evaluation of the INNO-LiPA-Rif. TB assay, a reverse hybridization assay for the simultaneous detection of Mycobacterium tuberculosis complex and its resistance to rifampin. Antimicrob Agents Chemother. 1997;41(10):2093–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ling DI, Zwerling AA, Pai M. Genotype MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: a meta-analysis. Eur Respir J. 2008;32(5):1165–74.

    Article  CAS  PubMed  Google Scholar 

  30. Morgan M, Kalantri S, Flores L, Pai M. A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. BMC Infect Dis. 2005;5:62.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Theron G, Peter J, Richardson M, Barnard M, Donegan S, Warren R, et al. The diagnostic accuracy of the Genotype((r)) MTBDRsl assay for the detection of resistance to second-line anti-tuberculosis drugs. Cochrane Database Syst Rev. 2014;10, CD010705.

    Google Scholar 

  32. Crudu V, Stratan E, Romancenco E, Allerheiligen V, Hillemann A, Moraru N. First evaluation of an improved assay for molecular genetic detection of tuberculosis as well as rifampin and isoniazid resistances. J Clin Microbiol. 2012;50(4):1264–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barnard M, van Pittius NCG, van Helden PD, Bosman M, Coetzee G, Warren RM. The diagnostic performance of the Genotype MTBDRplus version 2 line probe assay is equivalent to that of the Xpert MTB/RIF assay. J Clin Microbiol. 2012;50(11):3712–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mitarai S, Kato S, Ogata H, Aono A, Chikamatsu K, Mizuno K, et al. Comprehensive multicenter evaluation of a new line probe assay kit for identification of mycobacterium species and detection of drug-resistant Mycobacterium tuberculosis. J Clin Microbiol. 2012;50(3):884–90.

    Article  PubMed  PubMed Central  Google Scholar 

  35. FIND. Report for WHO: Non-inferiority evaluation of Nipro NTM + MDRTB and Hain GenoType MTBDRplus V2 line probe assays. 2015.

    Google Scholar 

  36. Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, et al. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med. 2010;363(11):1005–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol. 1996;14(3):303–8.

    Article  CAS  PubMed  Google Scholar 

  38. Steingart KR, Schiller I, Horne DJ, Pai M, Boehme CC, Dendukuri N. Xpert MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev. 2014;1, CD009593.

    Google Scholar 

  39. Kurbatova EV, Gammino VM, Bayona J, Becerra MC, Danilovitz M, Falzon D, et al. Predictors of sputum culture conversion among patients treated for multidrug-resistant tuberculosis. Int J Tuberc Lung Dis. 2012;16(10):1335–43.

    Article  CAS  PubMed  Google Scholar 

  40. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo EC, Bradley P, et al. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis. 2015;15(10):1193–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Van Deun A, Aung KJ, Hossain A, de Rijk P, Gumusboga M, Rigouts L, et al. Disputed rpoB mutations can frequently cause important rifampicin resistance among new tuberculosis patients. Int J Tuberc Lung Dis. 2015;19(2):185–90.

    Article  PubMed  Google Scholar 

  42. Srivastava S, Pasipanodya JG, Meek C, Leff R, Gumbo T. Multidrug-resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability. J Infect Dis. 2011;204(12):1951–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gumbo T, Angulo-Barturen I, Ferrer-Bazaga S. Pharmacokinetic-pharmacodynamic and dose-response relationships of antituberculosis drugs: recommendations and standards for industry and academia. J Infect Dis. 2015;211(Suppl3):S96–106.

    Article  PubMed  Google Scholar 

  44. Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs. 2014;74(8):839–54.

    Article  CAS  PubMed  Google Scholar 

  45. Gumbo T, Pasipanodya JG, Wash P, Burger A, McIlleron H. Redefining multidrug-resistant tuberculosis based on clinical response to combination therapy. Antimicrob Agents Chemother. 2014;58(10):6111–15.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gumbo T, Louie A, Deziel MR, Parsons LM, Salfinger M, Drusano GL. Selection of a moxifloxacin dose that suppresses drug resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection model and mathematical modeling. J Infect Dis. 2004;190(9):1642–51.

    Article  CAS  PubMed  Google Scholar 

  47. Woods GL, Lin S-YG, Desmond EP. Susceptibility test methos: mycobacteria, nocardia, and other actinomycetes. In: Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D, editors. Manual of clinical microbiology. 11th ed. Washington, DC: ASM Press; 2015. p. 1356–78.

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank the authors of the previous version of this chapter, the late Leonid Heifets and Gerard Cangelosi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sebastian G. Kurz M.D., Ph.D. or Max Salfinger M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kurz, S.G., Salfinger, M. (2017). Drug Resistance Assays for Mycobacterium tuberculosis . In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-47266-9_33

Download citation

Publish with us

Policies and ethics