Skip to main content

Process Implications of CO2 Capture Solvent Selection

  • Chapter
  • First Online:
Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption

Part of the book series: Green Energy and Technology ((GREEN))

  • 1523 Accesses

Abstract

In the development of energy efficient solvents for advanced CO2 capture processes, it has often been the case that potentially excellent solvents are overlooked or set aside because of perceived process difficulties or extra costs due to the physical, chemical or thermodynamic properties of the solvent. This chapter considers the process implications of solvent selection with the objective of selecting and designing the process to suit the solvent rather than forcing the solvent into an existing process. The chapter discusses the design, modelling and costing of conventional amine processes insofar as advanced energy efficient solvents still rely on this process. Individual solvent properties, including reaction kinetics, thermodynamics and physical properties are outlined and their impact on design are discussed. Aspects such as degradation products, corrosivity and environmental considerations will impact the selection of process equipment and materials of construction. The impact of these properties of energy efficient solvents on individual unit operations are also discussed in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

FDG:

Flue gas desulphurization

HPLC:

High pressure liquid chromatography

HSS:

Heat stable salts

HTU:

Height of a transfer unit

IC:

Ion chromatography

LP:

Low pressure

MDEA:

Methyldiethanolamine

MEA:

Monoethanolamine

MNPZ:

Mono-nitrosopiperazine

MP:

Medium pressure

PCC:

Post-combustion capture

PZ:

Piperazine

SCR:

Selective catalytic reduction

VLE:

Vapour-liquid-equilibrium

Cp :

Heat capacity (constant pressure)

E:

Efficiency; capture efficiency; Energy

G:

Mass flowrate of gas

H:

Height (of packing)

\(\Delta H_{{CO_{2} }}^{vap}\) :

Desorption enthalpy for CO2

I:

Interest

L:

Mass flowrate of liquid

m:

Mass flowrate

MW:

Molecular weight

P:

Pressure, Plant capacity

Q:

Heat, Energy

T:

Temperature

v :

Volumetric fraction of a component in a gas

w:

Weight fraction

α:

CO2 loading (moles CO2/moles active solvent component)

Δ:

Difference

0:

Unloaded solvent

am:

Amine or other active component of the capture solvent

cap:

Capital (cost)

CO2 :

Value for CO2 or its fraction of a stream

cond:

Condenser, Condensate

cw:

Cooling water

DES:

Desorber (stripper)

FG:

Flue Gas

in:

Inlet flow

L:

Lean (stripped) solvent

out:

Outlet flow

R:

Rich (containing captured CO2) solvent

sens:

Sensible heat

tot:

Total

References

  1. Kohl AL, Nielsen R (1997) Gas purification, 5th edn. Gulf Publishing

    Google Scholar 

  2. Sander MT, Mariz CL (1992) The Fluor Daniel Econamine FG process—past experience and present-day focus. In: 1st International Conference on Carbon Dioxide Removal (ICCDR), Amsterdam, Netherlands, 04–06 Mar 1992, pp 341–348

    Google Scholar 

  3. Budzianowski WM (2015) Single solvents, solvent blends, and advanced solvent systems in CO2 capture by absorption: a review. Int J Glob Warm 7(2):184–225. Doi:10.1504/ijgw.2015.067749

    Article  Google Scholar 

  4. Ramezan M, Skone TJ, Nsakala NY, Liljedahl GN (2007) Carbon dioxide capture from existing coal-fired power plants. National Energy Technology Laboratory

    Google Scholar 

  5. Cottrell AJ, McGregor JM, Jansen J, Artanto Y, Dave N, Morgan S, Pearson P, Attalla MI, Wardhaugh L, Yu H, Allport A, Feron PHM (2009) Post-combustion capture R&D and pilot plant operation in Australia. In: Gale J, Herzog H, Braitsch J (eds) Greenhouse Gas Control Technologies 9, vol 1. Energy Procedia. pp 1003–1010. Doi:10.1016/j.egypro.2009.01.133

  6. Cousins A, Wardhaugh LT, Feron PHM (2011) A survey of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption. Int J Greenhouse Gas Control 5:605–619. Doi:10.1016/j.ijggc.2011.01.002

  7. Cousins A, Cottrell A, Lawson A, Huang S, Feron PHM (2012) Model verification and evaluation of the rich-split process modification at an Australian-based post combustion CO2 capture pilot plant. Greenh Gases 2(5):329–345

    Article  Google Scholar 

  8. Puxty G, Rowland R, Allport A, Yang Q, Bown M, Burns R, Maeder M, Attalla M (2009) Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. Environ Sci Technol 43(16):6427–6433

    Article  Google Scholar 

  9. Plaza JM, Van Wagener D, Rochelle GT (2009) Modeling CO2 capture with aqueous monoethanolamine. In: Gale J, Herzog H, Braitsch J (eds) Greenhouse Gas Control Technologies 9, vol 1. Energy Procedia. pp 1171–1178. Doi:10.1016/j.egypro.2009.01.154

  10. Zhang Y, Chen H, Chen CC, Plaza JM, Dugas R, Rochelle GT (2009) Rate-based process modeling study of CO2 capture with aqueous monoethanolamine solution. Ind Eng Chem Res 48(20):9233–9246. Doi:10.1021/ie900068k

    Article  Google Scholar 

  11. Freguia S, Rochelle GT (2003) Modeling of CO2 capture by aqueous monoethanolamine. AIChE J 49(7):1676–1686

    Article  Google Scholar 

  12. von Harbou I, Imle M, Hasse H (2014) Modeling and simulation of reactive absorption of CO2 with MEA: results for four different packings on two different scales. Chem Eng Sci 105:179–190. Doi:10.1016/j.ces.2013.11.005

    Article  Google Scholar 

  13. Razi N, Svendsen HF, Bolland O (2014) Assessment of mass transfer correlations in rate-based modeling of a large-scale CO2 capture with MEA. Int J Greenhouse Gas Control 26:93–108. Doi:10.1016/j.figgc.2014.04.019

    Article  Google Scholar 

  14. Dugas R, Alix P, Lemaire E, Broutin P, Rochelle G (2009) Absorber model for CO2 capture by monoethanolamine; application to CASTOR pilot results. Energy Procedia 1(1):103–107

    Article  Google Scholar 

  15. Saimpert M, Puxty G, Qureshi S, Wardhaugh L, Cousins A (2013) A new rate based absorber and desorber modelling tool. Chem Eng Sci 96:10–25. Doi:10.1016/j.ces.2013.03.013

    Article  Google Scholar 

  16. Yu YS, Lu HF, Wang GX, Zhang ZX, Rudolph V (2013) Characterizing the transport properties of multiamine solutions for CO2 capture by molecular dynamics simulation. J Chem Eng Data 58(6):1429–1439. Doi:10.1021/je3005547

    Article  Google Scholar 

  17. Rubin ES, Short C, Booras G, Davison J, Ekstrom C, Matuszewski M, McCoy S (2013) A proposed methodology for CO2 capture and storage cost estimates. Int J Greenhouse Gas Control 17:488–503. Doi:10.1016/j.ijggc.2013.06.004

    Article  Google Scholar 

  18. Dave N, Do T, Palfreyman D, Feron PHM, Xu S, Gao S, Liu L (2011) Post-combustion capture of CO2 from coal-fired power plants in China and Australia: an experience based cost comparison. In: Gale J, Hendriks C, Turkenberg W (eds) 10th international conference on Greenhouse Gas Control Technologies, vol 4. Energy Procedia, pp 1869–1877. Doi:10.1016/j.egypro.2011.02.065

  19. Peters MS, Timmerhaus KD, West RE (2003) Plant design and economics for chemical engineers, 5th edn. McGraw-Hill, Boston

    Google Scholar 

  20. Kierzkowska-Pawlak H, Chacuk A, Siemieniec M (2014) Reaction kinetics of CO2 in aqueous 2-(2-aminoethylamino)ethanol solutions using a stirred cell reactor. Int J Greenhouse Gas Control 24:106–114. Doi:10.1016/j.ijggc.2014.03.004

    Article  Google Scholar 

  21. Conway W, Beyad Y, Maeder M, Burns R, Feron P, Puxty G (2014) CO2 absorption into aqueous solutions containing 3-piperidinemethanol: CO2 mass transfer, stopped-flow kinetics, H-1/C-13 NMR, and vapor-liquid equilibrium investigations. Ind Eng Chem Res 53(43):16715–16724. Doi:10.1021/ie503195x

    Article  Google Scholar 

  22. Kunze A-K, Dojchinov G, Haritos VS, Lutze P (2015) Reactive absorption of CO2 into enzyme accelerated solvents: from laboratory to pilot scale. Appl Energy 156:676–685. Doi:10.1016/j.apenergy.2015.07.033

    Article  Google Scholar 

  23. Bishnoi S, Rochelle GT (2000) Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility. Chem Eng Sci 55(22):5531–5543

    Article  Google Scholar 

  24. Dang HY, Rochelle GT (2003) CO2 absorption rate and solubility in monoethanolamine/piperazine/water. Sep Sci Technol 38(2):337–357. Doi:10.1081/ss-12016678

    Article  Google Scholar 

  25. Jou FY, Otto FD, Mather AE (1994) Vapor-liquid-equilibrium of carbon-dioxide in aqueous mixtures of monoethanolamine and methyldiethanolamine. Ind Eng Chem Res 33(8):2002–2005

    Article  Google Scholar 

  26. Kumar PS, Hogendoorn JA, Feron PHM, Versteeg GF (2003) Equilibrium solubility of CO2 in aqueous potassium taurate solutions: Part 1. Crystallization in carbon dioxide loaded aqueous salt solutions of amino acids. Ind Eng Chem Res 42(12):2832–2840. Doi:10.1021/ie0206002

    Article  Google Scholar 

  27. Fan GJ, Wee AGH, Idem R, Tontiwachwuthikul P (2009) NMR studies of amine species in MEA-CO2-H2O system: modification of the model of vapor-liquid equilibrium (VLE). Ind Eng Chem Res 48(5):2717–2720. Doi:10.1021/ie8015895

    Article  Google Scholar 

  28. Park SJ, Shin HY, Min BM, Cho A, Lee JS (2009) Vapor-liquid equilibria of water plus monoethanolamine system. Korean J Chem Eng 26(1):189–192

    Article  Google Scholar 

  29. Puxty G, Rowland R (2011) Modeling CO2 mass transfer in amine mixtures: PZ-AMP and PZ-MDEA. Environ Sci Technol 45(6):2398–2405. Doi:10.1021/es1022784

    Article  Google Scholar 

  30. Li H, Le Moullec Y, Lu JH, Chen J, Marcos JCV, Chen GF, Chopin F (2015) CO2 solubility measurement and thermodynamic modeling for 1-methylpiperazine/water/CO2. Fluid Phase Equilib 394:118–128. Doi:10.1016/j.fluid.2015.03.021

    Article  Google Scholar 

  31. Freeman SA, Dugas R, Van Wagener D, Nguyen T, Rochelle GT (2009) Carbon dioxide capture with concentrated, aqueous piperazine. 10.1016/j.egypro.2009.01.195. In: Gale J, Herzog H, Braitsch J (eds) Greenhouse Gas Control Technologies 9, vol 1. Energy Procedia, pp 1489–1496

  32. Cousins A, Nielsen P, Huang S, Cottrell A, Chen E, Rochelle GT, Feron PHM (2015) Pilot-scale evaluation of concentrated piperazine for CO2 capture at an Australian coal-fired power station: duration experiments. Greenhouse Gases 5(4):363–373. Doi:10.1002/ghg.1507

    Article  Google Scholar 

  33. Moser P, Schmidt S, Stahl K, Vorberg G, Lozano GA, Stoffregen T, Roesler F (2014) Demonstrating emission reduction—results from the post-combustion capture pilot plant at Niederaussem. In: Dixon T, Herzog H, Twinning S (eds) 12th international Conference on Greenhouse Gas Control Technologies, Ghgt-12, vol 63. Energy Procedia. pp 902–910. Doi:10.1016/j.egypro.2014.11.100

  34. Pinto DDD, Knuutila H, Fytianos G, Haugen G, Mejdell T, Svendsen HF (2014) CO2 post combustion capture with a phase change solvent. Pilot plant campaign. Int J Greenhouse Gas Control 31:153–164. Doi:10.1016/j.ijggc.2014.10.007

    Article  Google Scholar 

  35. Song D, Seibert AF, Rochelle GT (2014) Effect of liquid viscosity on the liquid phase mass transfer coefficient of packing. In: Dixon T, Herzog H, Twinning S (eds) 12th international conference on Greenhouse Gas Control Technologies, Ghgt-12, vol 63. Energy Procedia. Elsevier Science Bv, Amsterdam, pp 1268–1286. Doi:10.1016/j.egypro.2014.11.136

  36. Freeman SA, Rochelle GT (2011) Density and viscosity of aqueous (piperazine plus carbon dioxide) solutions. J Chem Eng Data 56(3):574–581. Doi:10.1021/je1012263

    Article  Google Scholar 

  37. Amundsen TG, Oi LE, Eimer DA (2009) Density and viscosity of monoethanolamine plus water plus carbon dioxide from (25 to 80) degrees C. J Chem Eng Data 54(11):3096–3100. Doi:10.1021/je900188m

    Article  Google Scholar 

  38. Kumar PS, Hogendoorn JA, Feron PHM, Versteeg GF (2001) Density, viscosity, solubility, and diffusivity of N2O in aqueous amino acid salt solutions. J Chem Eng Data 46(6):1357–1361

    Article  Google Scholar 

  39. Shokouhi M, Jalili AH, Samani F, Hosseini-Jenab M (2015) Experimental investigation of the density and viscosity of CO2-loaded aqueous alkanolamine solutions. Fluid Phase Equilib 404:96–108. Doi:10.1016/j.fluid.2015.06.034

    Article  Google Scholar 

  40. Weiland RH, Dingman JC, Cronin DB, Browning GJ (1998) Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends. J Chem Eng Data 43(3):378–382

    Article  Google Scholar 

  41. Chang R (1998) Chemistry, 6th edn. McGraw Hill, New York

    Google Scholar 

  42. Tsai RE, Schultheiss P, Kettner A, Lewis JC, Seibert AF, Eldridge RB, Rochelle GT (2008) Influence of surface tension on effective packing area. Ind Eng Chem Res 47(4):1253–1260. Doi:10.1021/ie0707801

    Article  Google Scholar 

  43. Sedelies R, Steiff A, Weinspach P-M (1987) Mass transfer area in different gas-liquid reactors as a function of liquid properties. Chem Eng Technol 10:1–15

    Article  Google Scholar 

  44. Radgen P, Rode H, Reddy S, Yonkoski J (2014) Lessons learned from the operation of a 70 tonne per day post combustion pilot plant at the coal fired power plant in Wilhelmshaven, Germany. In: Dixon T, Herzog H, Twinning S (eds) 12th international conference on Greenhouse Gas Control Technologies, Ghgt-12, vol 63. Energy Procedia. Elsevier Science Bv, Amsterdam, pp 1585–1594. Doi:10.1016/j.egypro.2014.11.168

  45. Reitenbach G (2015) SaskPower’s Boundary Dam Carbon Capture Project Wins POWER’s Highest Award. Power 159(8):24

    Google Scholar 

  46. Jackson P, Attalla MI (2010) N-Nitrosopiperazines form at high pH in post-combustion capture solutions containing piperazine: a low-energy collisional behaviour study. Rapid Commun Mass Spectrom 24(24):3567–3577. Doi:10.1002/rcm.4815

    Article  Google Scholar 

  47. Knuutila H, Svendsen HF, Asif N (2014) Decomposition of nitrosamines in aqueous monoethanolamine (MEA) and diethanolamine (DEA) solutions with UV-radiation. Int J Greenhouse Gas Control 31:182–191. Doi:10.1016/j.ijggc.2014.10.002

    Article  Google Scholar 

  48. Fine NA, Rochelle GT (2013) Thermal decomposition of n-nitrosopiperazine. In: Dixon T, Yamaji K (eds) Ghgt-11, vol 37. Energy Procedia. Elsevier Science Bv, Amsterdam, pp 1678–1686. Doi:10.1016/j.egypro.2013.06.043

  49. Pearson P, Cousins A (2015) Assessment of corrosion in amine-based post-combustion capture of carbon dioxide systems. In: Feron P (ed) Absorption-based post-combustion capture of Carbon Dioxide, in press edn. Elsevier (in press)

    Google Scholar 

  50. GPSA (2004) GPSA engineering data book. Tulsa, Oklahoma

    Google Scholar 

  51. Dupart MS, Bacon TR, Edwards DJ (1993) Understanding corrosion in alkanolamine gas treating plants. 1. Proper mechanism diagnosis optimizes amine operations. Hydrocarbon Process 72(4):75–80

    Google Scholar 

  52. Dupart MS, Bacon TR, Edwards DJ (1993) Understanding corrosion in alkanolamine gas treating plants. Hydrocarbon Process 72(5):89–94

    Google Scholar 

  53. Johnson DW, Reddy S, Brown JH (2009) Commercially available CO2 capture technology. Power 153(8):58–60

    Google Scholar 

  54. Kittel J, Gonzalez S (2014) Corrosion in CO2 post-combustion capture with alkanolamines—a review. Oil Gas Sci Technol 69(5):915–929. Doi:10.2516/ogst/2013161

    Article  Google Scholar 

  55. Bello A, Idem RO (2006) Comprehensive study of the kinetics of the oxidative degradation of CO2 loaded and concentrated aqueous monoethanolamine (MEA) with and without sodium metavanadate during CO2 absorption from flue gases. Ind Eng Chem Res 45(8):2569–2579. Doi:10.1021/ie050562x

    Article  Google Scholar 

  56. de Koeijer G, Enge Y, Sanden K, Graff OF, Falk-Pedersen O, Amundsen T, Overa S (2011) CO2 Technology Centre Mongstad—design, functionality and emissions of the amine plant. In: Gale J, Hendriks C, Turkenberg W (eds) 10th international conference on Greenhouse Gas Control Technologies, vol 4. Energy Procedia, pp 1207–1213. Doi:10.1016/j.egypro.2011.01.175

  57. Moser P, Schmidt S, Uerlings R, Sieder G, Titz J-T, Hahn A, Stoffregen T (2011) Material testing for future commercial post-combustion capture plants—results of the testing programme conducted at the Niederaussem pilot plant. In: Gale J, Hendriks C, Turkenberg W (eds) 10th international conference on Greenhouse Gas Control Technologies, vol 4. Energy Procedia, pp 1317–1322. Doi:10.1016/j.egypro.2011.01.189

  58. Cousins A, Ilyushechkin A, Pearson P, Cottrell A, Huang S, Feron PHM (2013) Corrosion coupon evaluation under pilot-scale CO2 capture conditions at an Australian coal-fired power station. Greenh Gases 3(3):169–184. Doi:10.1002/ghg.1341

    Article  Google Scholar 

  59. Kittel J, Idem R, Gelowitz D, Tontiwachwuthikul P, Parrain G, Bonneau A (2009) Corrosion in MEA units for CO(2) capture: pilot plant studies. In: Gale J, Herzog H, Braitsch J (eds) Greenhouse Gas Control Technologies 9, vol 1. Energy Procedia, vol 1, pp 791–797. Doi:10.1016/j.egypro.2009.01.105

  60. Monea M (2013) Boundary Dam—progress and status. Paper presented at the 7th Trondheim CCS conference, Trondheim 4–6 June 2013

    Google Scholar 

  61. Weiland RH, Dingman JC, Cronin DB (1997) Heat capacity of aqueous monoethanolamine, diethanolamine, N-methyldiethanolamine, and N-methyldiethanolamine-based blends with carbon dioxide. J Chem Eng Data 42(5):1004–1006

    Article  Google Scholar 

  62. Shaikh MS, Shariff AM, Bustam MA, Murshid G (2014) Physicochemical properties of aqueous solutions of sodium l-prolinate as an absorbent for CO2 removal. J Chem Eng Data 59(2):362–368. Doi:10.1021/je400830w

    Article  Google Scholar 

  63. Aroonwilas A, Veawab A (2007) Heat recovery gas absorption process

    Google Scholar 

  64. Leites IL, Sama DA, Lior N (2003) The theory and practice of energy saving in the chemical industry: some methods for reducing thermodynamic irreversibility in chemical technology processes. Energy 28(1):55–97

    Article  Google Scholar 

  65. Cousins A, Wardhaugh LT, Feron PHM (2011) Preliminary analysis of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption. Chem Eng Res Des 89(8A):1237–1251. Doi:10.1016/j.cherd.2011.02.008

    Article  Google Scholar 

  66. Oyenekan BA, Rochelle GT (2007) Alternative stripper configurations for CO2 capture by aqueous amines. AIChE J 53(12):3144–3154. Doi:10.1002/aic.11316

    Article  Google Scholar 

  67. Freeman SA, Dugas R, Van Wagener DH, Nguyen T, Rochelle GT (2010) Carbon dioxide capture with concentrated, aqueous piperazine. Int J Greenhouse Gas Control 4(2):119–124. Doi:10.1016/j.ijggc.2009.10.008

    Article  Google Scholar 

  68. Cousins A, Huang S, Cottrell A, Feron PHM, Chen E, Rochelle GT (2015) Pilot-scale parametric evaluation of concentrated piperazine for CO2 capture at an Australian coal-fired power station. Greenhouse Gases 5(1):7–16. Doi:10.1002/ghg.1462

    Article  Google Scholar 

  69. Kuntz J, Aroonwilas A (2008) Performance of spray column for CO2 capture application. Ind Eng Chem Res 47(1):145–153. Doi:10.1021/ie0617021

    Article  Google Scholar 

  70. Seyboth O, Zimmermann S, Heidel B, Scheffknecht G (2014) Development of a spray scrubbing process for post combustion CO2 capture with amine based solvents. In: Dixon T, Herzog H, Twinning S (eds) 12th international conference on Greenhouse Gas Control Technologies, Ghgt-12, vol 63. Energy Procedia. Elsevier Science Bv, Amsterdam, pp 1667–1677. Doi:10.1016/j.egypro.2014.11.176

  71. Kavoshi L, Rahimi A, Hatamipour MS (2015) CFD modeling and experimental study of carbon dioxide removal in a lab-scale spray dryer. Chem Eng Res Des 98:157–167. Doi:10.1016/j.cherd.2015.04.023

    Article  Google Scholar 

  72. Awtry AR, Brasseur JK, Henshaw TL, Hobbs KR, McDermott WE, Miller NJ, Neumann DK, Nizamov BR, Tobias JA, Anderson JL, Courtright JL (2009) Gas liquid contactor module, useful for e.g. removing gas phase molecules, comprises liquid inlet, gas inlet, gas outlet, array of nozzles in communication with the liquid inlet and gas inlet, gas liquid separator and liquid outlet. CN102217152-B

    Google Scholar 

  73. Awtry A (2013) Status of the Carbon Dioxide Absorber Retrofit Equipment (CARE) program. Paper presented at the 2013 CO2 Capture Technical Meeting

    Google Scholar 

  74. Wardhaugh L (2010) Toward significant capital cost reduction in post combustion capture plants. Paper presented at the Chemeca 2010, Adelaide, South Australia, 26–29 Sept 2010

    Google Scholar 

  75. Ramshaw C (1983) HIGEE Distillation—an example of process intensification. Chem Eng Lond 389:13–14

    Google Scholar 

  76. Cheng HH, Tan CS (2009) Carbon dioxide capture by blended alkanolamines in rotating packed bed. In: Gale J, Herzog H, Braitsch J (eds) Greenhouse Gas Control Technologies 9, vol 1. Energy Procedia, pp 925–932. Doi:10.1016/j.egypro.2009.01.123

  77. Yu CH, Wu TW, Tan CS (2013) CO2 capture by piperazine mixed with non-aqueous solvent diethylene glycol in a rotating packed bed. Int J Greenhouse Gas Control 19:503–509. Doi:10.1016/j.ijggc.2013.10.014

    Article  Google Scholar 

  78. Jassim MS, Rochelle G, Eimer D, Ramshaw C (2007) Carbon dioxide absorption and desorption in aqueous monoethanolamine solutions in a rotating packed bed. Ind Eng Chem Res 46(9):2823–2833. Doi:10.1021/ie051104r

    Article  Google Scholar 

  79. Zhang L-L, Wang J-X, Liu Z-P, Lu Y, Chu G-W, Wang W-C, Chen J-F (2013) Efficient capture of carbon dioxide with novel mass-transfer intensification device using ionic liquids. AIChE J 59(8):2957–2965. Doi:10.1002/aic.14072

    Article  Google Scholar 

  80. Makarytchev SV, Langrish TAG, Fletcher DF (2005) Exploration of spinning cone column capacity and mass transfer performance using CFD. Chem Eng Res Des 83(A12):1372–1380. Doi:10.1205/cherd.03413

    Article  Google Scholar 

  81. Wang YD, Fei WY, Sun JH, Wan YK (2002) Hydrodynamics and mass transfer performance of a modified rotating disc contactor (MRDC). Chem Eng Res Des 80(4):392–400

    Article  Google Scholar 

  82. Wardhaugh L, Allport A, Garland E, Solnordal C (2013) A novel gas-liquid contactor for PCC based on a rotating liquid sheet. Paper presented at the The 7th Trondheim CCS Conference (TCCS-7): CO2 Capture, Transport and Storage, Trondheim, Norway, 4–6 June 2013

    Google Scholar 

  83. Knuutila H, Aronu UE, Kvamsdal HM, Chikukwa A (2011) Post combustion CO2 capture with an amino acid salt. In: Gale J, Hendriks C, Turkenberg W (eds) 10th international conference on Greenhouse Gas Control Technologies, vol 4. Energy Procedia, pp 1550–1557. Doi:10.1016/j.egypro.2011.02.024

  84. Eide-Haugmo I, Brakstad OG, Hoff KA, Sorheim KR, da Silva EF, Svendsen HF (2009) Environmental impact of amines. In: Gale J, Herzog H, Braitsch J (eds) Greenhouse Gas Control Technologies 9, vol 1. Energy Procedia, vol 1, pp 1297–1304. Doi:10.1016/j.egypro.2009.01.170

  85. Cousins A, Nielsen PT, Huang S, Rowland R, Edwards B, Cottrell A, Chen E, Rochelle GT, Feron PHM (2015) Pilot-scale evaluation of concentrated piperazine for CO2 capture at an Australian coal-fired power station: Nitrosamine measurements. Int J Greenhouse Gas Control 37:256–263. Doi:10.1016/j.ijggc.2015.03.007

    Article  Google Scholar 

  86. Dai N, Shah AD, Hu L, Plewa MJ, McKague B, Mitch WA (2012) Measurement of nitrosamine and nitramine formation from NO reactions with amines during amine-based carbon dioxide capture for postcombustion carbon sequestration. Environ Sci Technol 46(17):9793–9801. Doi:10.1021/es301867b

    Article  Google Scholar 

  87. Azzi M, Tibbett A, Halliburton B, Element A, Artanto Y, Meuleman E, Feron P (2014) Assessing atmospheric emissions from amine-based CO2 post-combustion capture processes and their impacts on the environment—a case study, vol 1. Measurement of emissions from a monoethanolamine-based post-combustion CO2 capture pilot plant. 1

    Google Scholar 

  88. Azzi M, Angove D, Campbell I, Cope M, Emmerson K, Feron P, Patterson M, Tibbett A, White S (2014) Assessing atmospheric emissions from an amine-based CO2 post-combustion capture processes and their impacts on the environment—a case study, vol 2. Atmospheric chemistry of MEA and 3D air quality modelling of emissions from the Loy Yang PCC plant, Final report. Global Carbon Capture and Storage Institute

    Google Scholar 

  89. Nurrokhmah L, Mezher T, Abu-Zahra MRM (2013) Evaluation of handling and reuse approaches for the waste generated from MEA-based CO2 capture with the consideration of regulations in the UAE. Environ Sci Technol 47(23):13644–13651. Doi:10.1021/es4027198

    Article  Google Scholar 

  90. Sexton A, Dombrowski K, Nielsen P, Rochelle G, Fisher K, Youngerman J, Chen E, Singh P, Davison J (2014) Evaluation of reclaimer sludge disposal from post-combustion CO2 capture. In: Dixon T, Herzog H, Twinning S (eds) 12th international conference on Greenhouse Gas Control Technologies, Ghgt-12, vol 63. Energy Procedia, pp 926–939. Doi:10.1016/j.egypro.2014.11.102

  91. Rochelle G, Chen E, Freeman S, Van Wagener D, Xu Q, Voice A (2011) Aqueous piperazine as the new standard for CO2 capture technology. Chem Eng J 171(3):725–733. Doi:10.1016/j.cej.2011.02.011

    Article  Google Scholar 

  92. Yang N, Yu H, Li LC, Xu DY, Han WF, Feron P (2014) Aqueous ammonia (NH3) based post combustion CO2 capture: a review. Oil Gas Sci Technol 69(5):931–945. Doi:10.2516/ogst/2013160

    Article  Google Scholar 

  93. Darde V, Thomsen K, van Well WJM, Stenby EH (2009) Chilled ammonia process for CO2 capture. In: Gale J, Herzog H, Braitsch J (eds) Greenhouse Gas Control Technologies 9, vol 1. Energy Procedia, pp 1035–1042. Doi:10.1016/j.egypro.2009.01.137

  94. Telikapalli V, Kozak F, Francois J, Sherrick B, Black J, Muraskin D, Cage M, Hammond M, Spitznogle G (2011) CCS with the Alstom chilled ammonia process development program—field pilot results. In: Gale J, Hendriks C, Turkenberg W (eds) 10th international conference on Greenhouse Gas Control Technologies, vol 4. Energy Procedia, Elsevier Science Bv, Amsterdam, pp 273–281. Doi:10.1016/j.egypro.2011.01.052

  95. Yu H, Qi G, Xiang Q, Wang S, Fang M, Yang Q, Wardhaugh L, Feron P (2013) Aqueous ammonia based post combustion capture: results from pilot plant operation, challenges and further opportunities. Paper presented at the the 11th Greenhouse Gas Control Technologies (GHGT) conference, Kyoto International Conference Center, Japan, 18–22 Nov 2012

    Google Scholar 

  96. Aleixo M, Prigent M, Gibert A, Porcheron F, Mokbel I, Jose J, Jacquin M (2011) Physical and chemical properties of DMX (TM) solvents. In: Gale J, Hendriks C, Turkenberg W (eds) 10th international conference on Greenhouse Gas Control Technologies, vol 4. Energy Procedia. Elsevier Science Bv, Amsterdam, pp 148–155. Doi:10.1016/j.egypro.2011.01.035

  97. Raynal L, Alix P, Bouillon PA, Gomez A, de Nailly ML, Jacquin M, Kittel J, di Lella A, Mougin P, Trapy J (2011) The DMX (TM) process: an original solution for lowering the cost of post-combustion carbon capture. In: Gale J, Hendriks C, Turkenberg W (eds) 10th international conference on Greenhouse Gas Control Technologies, vol 4. Energy Procedia. Elsevier Science Bv, Amsterdam, pp 779–786. Doi:10.1016/j.egypro.2011.01.119

  98. Misiak K, Sanchez CS, van Os P, Goetheer E (2013) Next generation post-combustion capture: Combined CO2 and SO2 removal. In: Dixon T, Yamaji K (eds) Ghgt-11, vol 37. Energy Procedia. Elsevier Science Bv, Amsterdam, pp 1150–1159. Doi:10.1016/j.egypro.2013.05.212

  99. Cousins A, Artanto Y, Meuleman E, Pearson P, Puxty G, Jansen J, Conway W, Slater N, Curtis E, Monch A, Feron P, Verheyen V, Misiak K, Huizinga A, Sanchez Sanchez C, van Os P, Goetheer E, Castelow P (2014) Combined low-cost pre-treatment of flue gas and capture of CO2 from brown coal-fired power stations. Paper presented at the Low Rank Coal, Third International Industry Symposium, Melbourne, Australia, 28 Apr–1 May 2014

    Google Scholar 

  100. Yu H, Qi G, Wang S, Morgan S, Allport A, Cottrell A, Do T, McGregor J, Wardhaugh L, Feron P (2012) Results from trialling aqueous ammonia-based post-combustion capture in a pilot plant at Munmorah Power Station: gas purity and solid precipitation in the stripper. Int J Greenhouse Gas Control 10:15–25. Doi:10.1016/j.ijggc.2012.04.014

    Article  Google Scholar 

  101. Puxty G, Wei SC-C, Feron P, Meuleman E, Beyad Y, Burns R, Maeder M (2014) A novel process concept for the capture of CO2 and SO2 using a single solvent and column. In: Dixon T, Herzog H, Twinning S (eds) 12th international conference on Greenhouse Gas Control Technologies, Ghgt-12, vol 63. Energy Procedia, pp 703–714. Doi:10.1016/j.egypro.2014.11.078

  102. McLarnon CR, Duncan JL (2009) Testing of ammonia based CO(2) capture with multi-pollutant control technology. In: Gale J, Herzog H, Braitsch J (eds) Greenhouse Gas Control Technologies 9, vol 1. Energy Procedia, vol 1, pp 1027–1034. Doi:10.1016/j.egypro.2009.01.136

  103. Manning FS, Thompson RE (1991) Oilfield processing of petroleum, vol 1: Natural gas, vol 1. Penwell Publishing Company, Tulsa

    Google Scholar 

  104. Campbell KLS, Lapidot T, Williams DR (2015) Foaming of CO2-loaded amine solvents degraded thermally under stripper conditions. Ind Eng Chem Res 54(31):7751–7755. Doi:10.1021/acs.iecr.5b01935

    Article  Google Scholar 

  105. Chen X, Freeman SA, Rochelle GT (2010) Foaming of aqueous piperazine and monoethanolamine for CO2 capture. Int J Greenhouse Gas Control 5(2):381–386. Doi:10.1016/j.ijggc.2010.09.006

    Article  Google Scholar 

  106. Richner G, Puxty G (2012) Assessing the chemical speciation during CO2 absorption by aqueous amines using in situ FTIR. Ind Eng Chem Res 51(44):14317–14324. Doi:10.1021/ie302056f

    Article  Google Scholar 

  107. Artanto Y, Jansen J, Pearson P, Do T, Cottrell A, Meuleman E, Feron P (2012) Performance of MEA and amine-blends in the CSIRO PCC pilot plant at Loy Yang Power in Australia. Fuel 101:264–275. Doi:10.1016/j.fuel.2012.02.023

    Article  Google Scholar 

  108. Azzi M, Day S, French S, Halliburton B, Jackson P, Lavrencic S, Riley K, Tibbett A (2010) CO2 Capture Mongstadt—Project A—Establishing sampling and analytical procedures for potentially harmful components from post-combustion amine based CO2 capture. Task 2: Procedures for manual sampling. EP 105456, CSIRO, Australia

    Google Scholar 

  109. Gassnova (2015) http://www.gassnova.no/en/ccs-projects/full-scale-mongstad. Accessed July 2015

  110. Bui M, Gunawan I, Verheyen TV, Meuleman E, Feron P (2014) Dynamic operation of post-combustion CO2 capture in Australian coal-fired power plants. In: Dixon T, Herzog H, Twinning S (eds) 12th international conference on Greenhouse Gas Control Technologies, Ghgt-12, vol 63. Energy Procedia, pp 1368–1375. Doi:10.1016/j.egypro.2014.11.146

  111. Freeman SA (2011) Thermal degradation and oxidation of aqueous piperazine for carbon dioxide capture. Ph.D. thesis, University of Texas at Austin

    Google Scholar 

  112. Notz R, Mangalapally HP, Hasse H (2012) Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA. Int J Greenhouse Gas Control 6:84–112. Doi:10.1016/j.ijggc.2011.11.004

  113. Nielsen PT, Li L, Rochelle GT (2013) Piperazine degradation in pilot plants. In: Dixon T, Yamaji K (eds) Ghgt-11, vol 37. Energy Procedia, pp 1912–1923. Doi:10.1016/j.egypro.2013.06.072

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leigh T. Wardhaugh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wardhaugh, L.T., Cousins, A. (2017). Process Implications of CO2 Capture Solvent Selection. In: Budzianowski, W. (eds) Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47262-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47262-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47261-4

  • Online ISBN: 978-3-319-47262-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics