Skip to main content

Hybrid Intelligent Techniques for Segmentation of Breast Thermograms

  • Chapter
  • First Online:
Hybrid Soft Computing for Image Segmentation

Abstract

The incidence of breast cancer has rapidly increased over the past few decades in India and the mortality rate is more than other countries across the entire world. These facts have motivated the development of new technologies or modification of the existing technologies for the identification of breast cancer before it metastasizes to the neighboring tissues. Breast thermography is a promising front-line breast screening method, which is noncontact, cheap, quick, economic, and painless. The use of thermal imaging for the identification of breast abnormality is based on the principle that the temperature distribution in precancerous tissue and its surrounding area are always higher than that in normal breast tissue. However, the accurate interpretation and classification of the breast thermograms for proper diagnostic decision-making is a major problem. Proper segmentation of hottest region from the segmented breast region plays a key part in the diagnosis of breast cancer that calls for the application of hybrid intelligent methods in the segmentation of hottest region. The shape and size of the hottest regions are used to determine the degree of malignancy of the tumor and classify its type. Hybrid intelligent systems have been successfully applied in the classification of breast thermal images over the last few years. In this chapter, we have proposed a sequential hybrid intelligent technique for the segmentation of the hottest region and also shown the significance of hybrid intelligence systems over the conventional methods for the segmentation of hottest region. A detailed review related to the segmentation of breast region and the segmentation of hottest region is included in this chapter. In addition, this chapter also contains the detailed overview of the principles, reliability, and predictive ability of the breast thermogram in early diagnosis of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. International Agency for Research on Cancer (IARC) and World Health Organization (WHO). GLOBOCAN 2012: Estimated cancer incidence, mortality and prevalence worldwide in 2012 (2014). http://globocan.iarc.fr/Pages/fact-sheets-cancer.aspx

  2. http://www.breastcancerindia.net/statistics/trends.html. Accessed 10 Jan 2016

  3. Gautherie, M.: Thermopathology of breast cancer: measurement and analysis of in vivo temperature and blood flow. Ann. N. Y. Acad. Sci. 335, 383–415 (1999)

    Article  Google Scholar 

  4. Tan, T.Z., Quek, C., Ng, G.S., Ng, E.Y.K.: A novel cognitive interpretation of breast cancer thermography with complementary learning fuzzy neural memory structure. Expert Syst. Appl. 33, 652–666 (2007)

    Article  Google Scholar 

  5. Amula, W.C.: A review of breast thermography. Int. Acad. Clin. Thermol. (2003). http://www.iact-org.org/articles/articles-review-btherm.html

  6. Borchartt, T.B., Conci, A., Lima, R.C.F., Resmini, R., Sanchez, A.: Breast thermography from an image processing viewpoint: a survey. Signal Process. 93, 2785–2803 (2013)

    Article  Google Scholar 

  7. EtehadTavakol, M., Sadri, S., Ng, E.Y.K.: Application of K- and fuzzy c-means for color segmentation of thermal infrared breast images. J. Med. Syst. 34, 35–42 (2010)

    Article  Google Scholar 

  8. Milosevic, M., Jankovic, D., Peulic, A.: Thermography based breast cancer detection using texture features and minimum variance quantization. EXCLI J. 13, 1204–1215 (2014)

    Google Scholar 

  9. Pramanik, S., Bhattacharjee, D., Nasipuri, M.: Wavelet based thermogram analysis for breast cancer detection. In: Proceedings of IEEE International Symposium on Advanced Computing and Communication, Silchar, India, pp. 205–212 (2015)

    Google Scholar 

  10. de Oliveira, J.P.S., Conci, A., Perez, M.G., Andaluz, V.H.: Segmentation of infrared images: a new technology for early detection of breast diseases. In: Proceedings of IEEE International Conference on Industrial Technology, Seville, pp. 1765–1771 (2015)

    Google Scholar 

  11. https://ktlarkin.files.wordpress.com/2009/12/breast-anatomy2.gif?w=479. Accessed 21 Feb 2016

  12. Sobin, L.H., Wittekind, C.H.: TNM classification of malignant tumours, 4th edn. Paris, Springer 100, (1988)

    Google Scholar 

  13. http://www.cancer.org/cancer/breastcancer/detailedguide/breast-cancer-risk-factors. Accessed 10 Jan 2016

  14. http://ww5.komen.org/BreastCancer/Statistics.html. Accessed 10th January 2016

  15. http://ww5.komen.org/BreastCancer/FamilyHistoryofBreastOvarianorProstateCancer.html. Accessed 10 Jan 2016

  16. http://ww5.komen.org/KomenPerspectives/Breast-Density-and-Breast-Cancer-Risk.html. Accessed 10 Jan 2016

  17. http://www.breastcancer.org/risk/factors. Accessed 10th Jan 2016

  18. Collaborative Group on Hormonal Factors in Breast Cancer: Breast cancer and breast feeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50,302 women with breast cancer and 96,973 women without the disease. Lancet 20, 187–95 (2002)

    Google Scholar 

  19. Thermology. http://www.thermology.com/history.htm. Accessed 24 Jan 2016

  20. Gautherine, M., Gros, C.: Contribution of infrared thermography to early diagnosis, pretheraputic prognosis and post-irradiation follow-up of breast carcinomas. Med. Mundi 21, 135–149 (1976)

    Google Scholar 

  21. Gautherie, M., Gros, C.M.: Breast thermography and cancer risk prediction. Cancer 45(1), 51–56 (1980)

    Article  Google Scholar 

  22. Kennedy, D., Lee, T., Seely, D.: A comparative review of thermography as a breast screening technique. Integr. Cancer Ther. 8(1), 9–16 (2009)

    Article  Google Scholar 

  23. Gogoi, U.R., Bhowmik, M.K., Bhattacharjee, D., Ghosh, A.K., Majumder, G.: A study and analysis of hybrid intelligent techniques for breast cancer detection using breast thermograms. In: Hybrid Soft Computing Approaches, pp. 329–359 (2015)

    Google Scholar 

  24. Amalu, W.C., Hobbins, W.B., Head, J.F., Elliot, R.L.: Infrared imaging of the breast: a review. In: Diakides Nicholas, A., Bronzino Joseph, D. (eds.) Medical Infrared Imaging, pp. 9-1–9-22. Taylor and Francis, Boca Raton (2007)

    Google Scholar 

  25. Gershen-Cohen, J., Haberman, J., Brueschke, E.E.: Medical thermography: a summary of current status. Radiol. Clin. North Am. 3, 403–431 (1965)

    Google Scholar 

  26. Hoffman, R.: Thermography in the detection of breast malignancy. Am. J. Obstet. Gynecol. 98, 681–686 (1967)

    Article  Google Scholar 

  27. Amalric, R., Giraud, D., Altschule, C., Spitalier, J.M.: Value and interest of dynamic telethermography in detection of breast cance. Acta Thermogr. 1, 89–96 (1976)

    Google Scholar 

  28. Hobbins, W.B.: Abnormal thermogram - significance in breast cancer. Interam. J. Rad. 12, 337 (1987)

    Google Scholar 

  29. Spitalier, H., Giraud, D., Altschuler, C., Amalric, F., Spitalier, J.M., Brandone, H., Ayme, Y., Gardiol, A.: Does infrared thermography truly have a role in present-day breast cancer management? In: Biomedical Thermology (Proceedings of an International Symposium), pp. 269–278. Alan R. Liss, Inc., New York City (1982)

    Google Scholar 

  30. Nyirjesy, I., Ayme, T.: Clinical evaluation, mammography, and thermography in the diagnosis of breast carcinoma. Thermology 1, 170–173 (1986)

    Google Scholar 

  31. Parisky, Y.R., Sardi, A., Hamm, R., Hughes, K., Esserman, L., Rust, S., Callahan, K.: Efficacy of computerized infrared imaging analysis to evaluate mammographically suspicious lesions. Am. J. Roentgenol. 180, 263–269 (2003)

    Article  Google Scholar 

  32. Borchartt, T.B., Resmini, R., Conci, A., Martins, A., Silva, A.C., Diniz, E.M., Paiva, A., Lima, R.C.F.: Thermal feature analysis to aid on breast disease diagnosis. In: Proceedings of 21st Brazilian Congress of Mechanical Engineering-COBEM2011, Natal, Brazil, pp. 1–8 (2011)

    Google Scholar 

  33. Gautherie, M., Kotewicz, A., Gueblez, P.: Accurate and objective evaluation of breast thermograms: Basic principles and new advances with special reference to an improved computer assisted scoring system. In: Thermal assessment of Breast Health, pp. 72–97. MTP Press Limited (1983)

    Google Scholar 

  34. Gautherie, M.: New protocol for the evaluation of breast thermograms. In: Thermological Methods, VCH mbH, pp. 227–235 (1985)

    Google Scholar 

  35. Amalu, W.C., Hobbins, W.B., Head, J.F., Elliot, R.L.: Infrared Imaging of the Breast - An Overview, Medical Devices and Systems, pp. 25.1–25.20. CRC Press, Boca Raton (2006)

    Google Scholar 

  36. http://www.adelphatherm.com/#!untitled/c1dyz. Accessed 1 Jan 2016

  37. Ng, E.Y.K.: A review of thermography as promising non-invasive detection modality for breast tumor. Int. J. Thermal Sci. 48(5), 849–859 (2009)

    Article  Google Scholar 

  38. Ring, E.F.J.: Quantitative thermal imaging. Clin. Phys. Physiol. Meas. 11, 87–95 (1990)

    Article  Google Scholar 

  39. Thermography Guidelines (TG), Standards and Protocols in Clinical Thermographic Imaging, September 2002. http://www.iact-org.org/professionals/thermog-guidelines.html. Accessed Feb 2016

  40. Qi, H., Head, J.F.: Asymmetry analysis using automatic segmentation and classification for breast cancer detection in thermograms. In: Proceedings of the 23rd Annual International Conference of the IEEE EMBS, 3, Turkey, pp. 2866-2869 (2001)

    Google Scholar 

  41. Arena, F., Barone, C., Di Cicco, T.: Use of digital infrared imaging in enhanced breast cancer detection and monitoring of the clinical response to treatment. In: Proceedings of the 25th Annual International Conference on Engineering in Medicine and Biology Society (EMBS), vol. 2, pp. 1129-1132 (2003)

    Google Scholar 

  42. Arora, N., Martins, D., Ruggerio, D., Tousimis, E., Swistel, A.J., Osborne, M.P., Simmons, R.M.: Effectiveness of a non-invasive digital infrared thermal imaging system in the detection of breast cancer. Am. J. Surg. 196(4), 523–526 (2008)

    Article  Google Scholar 

  43. Tang, X., Ding, H., Yuan, Y., Wang, Q.: Morphological measurement of localized temperature increase amplitudes in breast infrared thermograms and its clinical application. Biomed. Signal Process. Control 3(1), 312–318 (2008)

    Article  Google Scholar 

  44. Ng, E.Y.K., Kee, E.C.: Integrative computer-aided diagnostic with breast thermogram. J. Mech. Med. Biol. 7(1), 1–10 (2007)

    Article  Google Scholar 

  45. Agostini, V., Knaflitz, M., Molinari, F.: Motion artifact reduction in breast dynamic infrared imaging. IEEE Trans. Biomed. Eng. 56(3), 903–906 (2009)

    Article  Google Scholar 

  46. Wishart, G.C., Campisi, M., Boswell, M., Chapman, D., Shackleton, V., Iddles, S., Hallett, A., Britton, P.D.: The accuracy of digital infrared imaging for breast cancer detection in women undergoing breast biopsy. Eur. J Cancer Surg. 36, 535–540 (2010)

    Google Scholar 

  47. Acharya, U.R., Ng, E.Y.K., Tan, J.H., Sree, S.V.: Thermography based breast cancer detection using texture features and support vector machine. J. Med. Syst. 36(3), 1503–1510 (2010)

    Article  Google Scholar 

  48. Nurhayati, O.D., Susanto, A., Widodo, T.S., Tjokronagoro, M.: Principal component analysis combined with first order statistical method for breast thermal images classification. Int. J. Comput. Sci. Technol. 2(2), 12–18 (2011)

    Google Scholar 

  49. Kontos, M., Wilson, R., Fentiman, I.: Digital infrared thermal imaging (DITI) of breast lesions: sensitivity and specificity of detection of primary breast cancers. Clin. Radiol. 66(2011), 536–539 (2011)

    Article  Google Scholar 

  50. Zadeh, H.G., Haddadnia, J., Hashemian, M., Hassanpour, K.: Diagnosis of breast cancer using a combination of genetic algorithm and artificial neural network in medical infrared thermal imaging. Iran J. Med. Phys. 9(4), 265–274 (2012)

    Google Scholar 

  51. PROENG. Image processing and image analyses applied to mastology (2012). http://visual.ic.uff.br/en/proeng/. Accessed 31 Jan 2016

  52. Silva, L.F., Saade, D.C.M., Sequeiros-Olivera, G.O., Silva, A.C., Paiva, A.C., Bravo, R.S., Conci, A.: A new database for breast research with infrared image. J. Med. Imaging Health Inf. 4(1), 92–100(9) (2014)

    Google Scholar 

  53. Tejerina, A.: Aula de Habilidadesy Simulacion em Patologia de la Mama’ (in Spanish). ADEMAS Comunicacion Grafica, Madrid, Spain (2009)

    Google Scholar 

  54. Delgado, F.G., Luna, J.G.V.: Feasibility of new-generation infrared screening for breast cancer in rural communities. US Obstet. Gynecol. Touch Briefings 5, 52–56 (2010)

    Google Scholar 

  55. Antonini, S., Kolaric, D., Nola, I.A., Herceg, Z., Ramljak, V., Kulis, T., Holjevac, J.K., Ferencic, Z.: Thermography surveillance after breast conserving surgery-three cases. In: 53rd International Symposium ELMAR, Croatia, pp. 317–319 (2011)

    Google Scholar 

  56. Kolaric, D., Herceg, Z., Nola, I.A., Ramljak, V., Kulis, T., Holjevac, J.K., Deutsch, J.A., Antonini, S.: Thermography-a feasible method for screening breast cancer. Coll. Antropol. 37(2), 583–588 (2013)

    Google Scholar 

  57. Motta, L.S., Conci, A., Lima, R.C.F., Diniz, E.M.: Automatic segmentation on thermograms in order to aid diagnosis and 2D modeling. In: Proceedings of 10th Workshop em Informatica Medica, Belo Horizonte, MG, Brazil, vol. 1, pp. 1610-1619 (2010). http://www.visual.ic.uff.br/proeng Accessed 19 March 2015

  58. Bharathi, G.B., Francis, S.V., Sasikala, M., Sandeep, J.D.: Feature analysis for abnormality detection in breast thermogram sequences subject to cold stress. In: Proceedings of the National Conference on Man Machine Interaction (NCMMI), 15-2 (2014)

    Google Scholar 

  59. Beware of Poor Breast Thermograms, ILSI Thermography Service. http://www.doctormedesign.com/HTMLcontent/Beware/of/Poor/Thermograms.htm

  60. Etehadtavakol, M., Ng, E.Y.K.: Breast thermography as a potential non-contact method in the early detection of cancer: a review. J. Mech. Med. Biol. 2(13), 1330001.1–1330001.20 (2013)

    Google Scholar 

  61. Ville Marie Medical Center. http://www.villemariemed.com. Accessed 31 Jan 2016

  62. Koay, J., Herry, C., Frize, M.: Analysis of breast thermography with an artificial neural network. Eng. Med. Biol. Soc. IEMBS 1(1), 1159–1162 (2004)

    Article  Google Scholar 

  63. BioBD. Bancode Dadosde Pesquisa Biomedica (2012). http://150.161.110.168/termo. Accessed 23 Jan 2016

  64. Araujo, M.C., Lima, R.C.F., Santos, F.: Desenvolvimento de um banco de dados como ferramenta auxiliary na deteccao precoce de cancer de mama’30 Iberian-Latin-American Congress on Computational Methods in Engineering, vol. 1, pp. 1–15. Armacao dos Buzios, RJ, Brazil (2009)

    Google Scholar 

  65. Conci, A., Lima, R.C.F., Fontes, C.A.P., Motta, L.S., Resmini, R.: A new method for automatic segmentation of the region of interest of thermographic breast image. Thermol. Int. 20(4), 134–135 (2010)

    Google Scholar 

  66. Conci, A., Lima, R.C.F., Fontes, C.A.P., Borchartt, T.B., Resmini, R.: A new method to aid to the breast diagnosis using fractal geometry. Thermol. Int. 20(4), 135–136 (2010)

    Google Scholar 

  67. Borchartt, T.B., Resmini, R., Motta, L.S., Clua, E.W.G., Conci, A., Viana, M.J.A., Santos, L.C., Lima, R.C.F., Sanchez, A.: Combining approaches for early diagnosis of breast diseases using thermal imaging’. Int. J. Innov. Comput. Appl. 3(4), 163–183 (2012)

    Article  Google Scholar 

  68. Gerasimova, E., Audit, B., Roux, S.G., Khalil, A., Gileva, O., Argoul, F., Naimark, O., Arneodo, A.: Wavelet-based multifractal analysis of dynamic infrared thermograms to assist in early breast cancer diagnosis. Front. Physiol. 5(176), 1–11 (2014)

    MATH  Google Scholar 

  69. Gileva, O.S., Freynd, G.G., Orlov, O.A., Libik, T.V., Gerasimova, E.I., Plekhov, O.A.: Interdisciplinary approaches to early diagnosis and screening of tumors and precancerous diseases (for example, breast cancer). RFBR J. 74–75, 93–99 (2012)

    Google Scholar 

  70. Qi, H., Kuruganti, P.T., Snyder, W.E.: Detecting breast cancer from thermal infrared images by asymmetry analysis. Biomedical Engineering Handbook 27(1–27), 14 (2006)

    Google Scholar 

  71. Jin-Yu, Z., Yan, C., Xian-Xiang, H.: IR thermal image segmentation based on enhanced genetic algorithms and two- dimensional classes square error. In: Second International Conference on Information and Computation Science, vol. 2(1), pp. 309–312 (2009)

    Google Scholar 

  72. Kapoor, P., Prasad, S.V.A.V.: Image processing for early diagnosis of breast cancer using infrared images. In: 2nd International Conference on Computer and Automation Engineering, vol. 3(1), pp. 564–566 (2010)

    Google Scholar 

  73. Zadeh, H.G., Kazerouni, I.A., Haddadnia, J.: Distinguish breast cancer based on thermal features in infrared images. Canadian J. Image Process. Comput. Vis. 2(6), 54–58 (2011)

    Google Scholar 

  74. Golestani, N., EtehadTavakol, M., Ng, E.Y.K.: Level set method for segmentation of infrared breast thermograms. EXCLI J. 13, 241–251 (2014)

    Google Scholar 

  75. Ji, Z., Liu, J., Cao, G., Sun, Q., Chen, Q.: Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation. Pattern Recogn. 47(7), 2454–2466 (2014)

    Article  Google Scholar 

  76. Torbati, N., Ayatollahi, A., Kermani, A.: An efficient neural network based method for medical image segmentation. Comput. Biol. Med. 44, 76–87 (2014)

    Article  Google Scholar 

  77. Krawczyk, B., Schaefer, G., Woźniak, M.: A hybrid cost-sensitive ensemble for imbalanced breast thermogram classification. Artif. Intell. Med. 65(3), 219–227 (2015)

    Article  Google Scholar 

  78. Li, H., Burgess, A.E.: Evaluation of signal detection performance with pseudo-color display and lumpy backgrounds. In: Kundel, H.L. (ed.) SPIE, Medical Imaging: Image Perception, Newport Beach, vol. 3036, pp. 143–149 (1997)

    Google Scholar 

  79. Bezdek, J.C., Keller, J., Krisnapuram, R., Pal, N.R.: Fuzzy models and algorithms for pattern recognition and image processing. Kluwer, Norwell (1999)

    Book  MATH  Google Scholar 

  80. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–1(2), 224–227 (1979)

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to DBT, Govt. of India for funding a project with Grant no. BT/533/NE/TBP/2014. Sourav Pramanik is also thankful to Department of Electronics and Information Technology (DeitY), Govt. of India, for providing him PhD-Fellowship under Visvesvaraya PhD scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourav Pramanik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Pramanik, S., Bhowmik, M.K., Bhattacharjee, D., Nasipuri, M. (2016). Hybrid Intelligent Techniques for Segmentation of Breast Thermograms. In: Bhattacharyya, S., Dutta, P., De, S., Klepac, G. (eds) Hybrid Soft Computing for Image Segmentation. Springer, Cham. https://doi.org/10.1007/978-3-319-47223-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47223-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47222-5

  • Online ISBN: 978-3-319-47223-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics