Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9953))

Included in the following conference series:

Abstract

Despite significant research progress made and methodological experience gained over the past few decades, a tight integration between programming and modelling, guided and supported by intuitive yet rigorous formal reasoning and verification methods that ensure high reliability and quality of the developed system remains challenging and is still far from becoming mainstream. We suggest that recent developments in the area of computational systems biology could allow us to gain some new perspectives about the challenges involved in developing pragmatic solutions unifying programming and modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. CRC Press, London (2006)

    MATH  Google Scholar 

  2. Antoniotti, M., Park, F., Policriti, A., Ugel, N., Mishra, B.: Foundations of a query and simulation system for the modeling of biochemical and biological processes. In: Pacific Symposium on Biocomputing (PSB), pp. 116–127 (2003)

    Google Scholar 

  3. Atwell, K., Qin, Z., Gavaghan, D., Kugler, H., Hubbard, E., Osborne, J.: Mechano-logical model of C. elegans germ line suggests feedback on the cell cycle. Development 142(22), 3902–3911 (2015)

    Article  Google Scholar 

  4. Brenner, S.: Sequences and consequences. Philos. Trans. R. Soc. B: Biol. Sci. 365(1537), 207–212 (2010)

    Article  Google Scholar 

  5. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biomolecular interaction networks. Theor. Comput. Sci. 325(1), 25–44 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chaouiya, C.: Petri net modelling of biological networks. Briefings Bioinform. 8(4), 210–219 (2007)

    Article  Google Scholar 

  7. Cook, B., Fisher, J., Krepska, E., Piterman, N.: Proving stabilization of biological systems. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 134–149. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18275-4_11

    Chapter  Google Scholar 

  8. Guziolowski, C., Videla, S., Eduati, F., Thiele, S., Cokelaer, T., Siegel, A., Saez-Rodriguez, J.: Exhaustively characterizing feasible logic models of a signaling network using answer set programming. Bioinformatics 29(18), 2320–2326 (2013)

    Article  Google Scholar 

  9. Hucka, M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)

    Article  Google Scholar 

  10. Kam, N., Kugler, H., Marelly, R., Appleby, L., Fisher, J., Pnueli, A., Harel, D., Stern, M., Hubbard, E.: A scenario-based approach to modeling development: a prototype model of C. elegans vulval fate specification. Dev. Biol. 323(1), 1–5 (2008)

    Article  Google Scholar 

  11. Kitano, H.: Computational systems biology. Nature 420(6912), 206–210 (2002)

    Article  Google Scholar 

  12. Koksal, A., Pu, Y., Srivastava, S., Bodik, R., Fisher, J., Piterman, N.: Synthesis of biological models from mutation experimentss. SIGPLAN-SIGACT Symp. Principles Program. Lang. 48, 469–482 (2013). ACM

    MATH  Google Scholar 

  13. Kugler, H., Larjo, A., Harel, D.: Biocharts: a visual formalism for complex biological systems. J. R. Soc. interface 7(48), 1015–1024 (2010)

    Article  Google Scholar 

  14. Kugler, H., Plock, C., Pnueli, A.: Controller synthesis from LSC requirements. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 79–93. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00593-0_6

    Chapter  Google Scholar 

  15. Kugler, H., Plock, C., Roberts, A.: Synthesizing biological theories. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 579–584. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1_46

    Chapter  Google Scholar 

  16. Kugler, H., Pnueli, A., Stern, M.J., Hubbard, E.J.A.: “Don’t Care” modeling: a logical framework for developing predictive system models. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 343–357. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71209-1_27

    Chapter  Google Scholar 

  17. Kugler, H., Segall, I.: Compositional synthesis of reactive systems from live sequence chart specifications. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 77–91. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00768-2_9

    Chapter  Google Scholar 

  18. Lakin, M., Paulevé, L., Phillips, A.: Stochastic simulation of multiple process calculi for biology. Theor. Comput. Sci. 431, 181–206 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Novère, N.L., et al.: The systems biology graphical notation. Nat. Biotechnol. 27, 735–741 (2009)

    Article  Google Scholar 

  20. Nurse, P.: Life, logic and information. Nature 454(7203), 424–426 (2008)

    Article  Google Scholar 

  21. Palsson, B.: Systems Biology: Constraint-Based Reconstruction and Analysis. Cambridge University Press, Cambridge (2015)

    Book  MATH  Google Scholar 

  22. Phillips, A., Cardelli, L., Castagna, G.: A graphical representation for biological processes in the stochastic pi-calculus. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS, vol. 4230, pp. 123–152. Springer, Heidelberg (2006). doi:10.1007/11905455_7

    Chapter  Google Scholar 

  23. Sharan, R., Karp, R.: Reconstructing boolean models of signaling. J. Comput. Biol. 20(3), 249–257 (2013)

    Article  MathSciNet  Google Scholar 

  24. Yordanov, B., Dunn, S.J., Kugler, H., Smith, A., Martello, G., Emmott, S.: A method to identify and analyze biological programs through automated reasoning. NPJ Syst. Biol. Appl. 2(16010) (2016)

    Google Scholar 

  25. Yordanov, B., Wintersteiger, C.M., Hamadi, Y., Kugler, H.: SMT-based analysis of biological computation. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 78–92. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38088-4_6

    Chapter  Google Scholar 

  26. Yordanov, B., Wintersteiger, C.M., Hamadi, Y., Phillips, A., Kugler, H.: Functional analysis of large-scale DNA strand displacement circuits. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 189–203. Springer, Heidelberg (2013). doi:10.1007/978-3-319-01928-4_14

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hillel Kugler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kugler, H. (2016). Unifying Modelling and Programming: A Systems Biology Perspective. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation: Discussion, Dissemination, Applications. ISoLA 2016. Lecture Notes in Computer Science(), vol 9953. Springer, Cham. https://doi.org/10.1007/978-3-319-47169-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47169-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47168-6

  • Online ISBN: 978-3-319-47169-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics