Skip to main content

Animal Models of Visceral Leishmaniasis and Applicability to Disease Control

  • Chapter
  • First Online:
Kala Azar in South Asia

Abstract

Visceral leishmaniasis (VL), also called kala-azar, is the most severe form of leishmaniasis and is often fatal if not treated. The disease is caused by the Leishmania donovani complex, which includes L. donovani and L. infantum/chagasi. Because of a lack of or limited availability of vaccines or chemotherapeutics for VL, extensive preclinical studies using various animal models have been undertaken to explore therapeutic strategies to overcome the disease. Mice, hamsters, dogs, and non-human primates have been studied, each of which has advantages and disadvantages depending on the purpose. Herein, we review the experimental models of VL, with an emphasis on murine models for L. donovani infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvar J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE. 2012;7(5):e35671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Joshi A, et al. Can visceral leishmaniasis be eliminated from Asia? J Vector Borne Dis. 2008;45(2):105–11.

    CAS  PubMed  Google Scholar 

  3. Mondal S, Bhattacharya P, Ali N. Current diagnosis and treatment of visceral leishmaniasis. Expert Rev Anti Infect Ther. 2010;8(8):919–44.

    Article  PubMed  Google Scholar 

  4. Chappuis F, et al. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol. 2007;5(11):873–82.

    Article  CAS  PubMed  Google Scholar 

  5. Handman E. Leishmaniasis: current status of vaccine development. Clin Microbiol Rev. 2001;14(2):229–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gupta S. Visceral leishmaniasis: experimental models for drug discovery. Indian J Med Res. 2011;133:27–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chatelain R, Varkila K, Coffman RL. IL-4 induces a Th2 response in Leishmania major-infected mice. J Immunol. 1992;148(4):1182–7.

    CAS  PubMed  Google Scholar 

  8. Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM. Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med. 1989;169(1):59–72.

    Article  CAS  PubMed  Google Scholar 

  9. Heinzel FP, Sadick MD, Mutha SS, Locksley RM. Production of interferon gamma, interleukin 2, interleukin 4, and interleukin 10 by CD4 + lymphocytes in vivo during healing and progressive murine leishmaniasis. Proc Natl Acad Sci USA. 1991;88(16):7011–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Locksley RM, Heinzel FP, Sadick MD, Holaday BJ, Gardner KD. Murine cutaneous leishmaniasis: susceptibility correlates with differential expansion of helper T-cell subsets. Ann Inst Pasteur Immunol 1987;138(5):744–749.

    Google Scholar 

  11. Sadick MD, Heinzel FP, Shigekane VM, Fisher WL, Locksley RM. Cellular and humoral immunity to Leishmania major in genetically susceptible mice after in vivo depletion of L3T4 + T cells. J Immunol. 1987;139(4):1303–9.

    CAS  PubMed  Google Scholar 

  12. Sadick MD, et al. Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon gamma-independent mechanism. J Exp Med. 1990;171(1):115–27.

    Article  CAS  PubMed  Google Scholar 

  13. Bradley DJ. Letter: genetic control of natural resistance to Leishmania donovani. Nature. 1974;250(464):353–4.

    Article  CAS  PubMed  Google Scholar 

  14. Blackwell JM. Genetic susceptibility to leishmanial infections: studies in mice and man. Parasitology. 1996;112(Suppl):S67–74.

    PubMed  Google Scholar 

  15. Liew FY, O’Donnell CA. Immunology of leishmaniasis. Adv Parasitol. 1993;32:161–259.

    Article  CAS  PubMed  Google Scholar 

  16. Kaye PM, et al. The immunopathology of experimental visceral leishmaniasis. Immunol Rev. 2004;201:239–53.

    Article  CAS  PubMed  Google Scholar 

  17. Wilson ME, Jeronimo SM, Pearson RD. Immunopathogenesis of infection with the visceralizing Leishmania species. Microb Pathog. 2005;38(4):147–60.

    Article  CAS  PubMed  Google Scholar 

  18. Engwerda CR, Kaye PM. Organ-specific immune responses associated with infectious disease. Immunol Today. 2000;21(2):73–8.

    Article  CAS  PubMed  Google Scholar 

  19. Murray HW, et al. Acquired resistance and granuloma formation in experimental visceral leishmaniasis. Differential T cell and lymphokine roles in initial versus established immunity. J Immunol. 1992;148(6):1858–63.

    CAS  PubMed  Google Scholar 

  20. Murray HW, Nathan CF. Macrophage microbicidal mechanisms in vivo: reactive nitrogen versus oxygen intermediates in the killing of intracellular visceral Leishmania donovani. J Exp Med. 1999;189(4):741–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Squires KE, et al. Experimental visceral leishmaniasis: role of endogenous IFN-gamma in host defense and tissue granulomatous response. J Immunol. 1989;143(12):4244–9.

    CAS  PubMed  Google Scholar 

  22. Engwerda CR, et al. A role for tumor necrosis factor-alpha in remodeling the splenic marginal zone during Leishmania donovani infection. Am J Pathol. 2002;161(2):429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lipoldova M, Demant P. Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis. Nat Rev Genet. 2006;7(4):294–305.

    Article  CAS  PubMed  Google Scholar 

  24. Stanley AC, Engwerda CR. Balancing immunity and pathology in visceral leishmaniasis. Immunol Cell Biol. 2007;85(2):138–47.

    Article  CAS  PubMed  Google Scholar 

  25. Carrion J, et al. Immunohistological features of visceral leishmaniasis in BALB/c mice. Parasite Immunol. 2006;28(5):173–83.

    Article  CAS  PubMed  Google Scholar 

  26. Nieto A, et al. Mechanisms of resistance and susceptibility to experimental visceral leishmaniosis: BALB/c mouse versus Syrian hamster model. Vet Res. 2011;42:39.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Miralles GD, Stoeckle MY, McDermott DF, Finkelman FD, Murray HW. Th1 and Th2 cell-associated cytokines in experimental visceral leishmaniasis. Infect Immun. 1994;62(3):1058–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Satoskar AR, et al. IL-12 gene-deficient C57BL/6 mice are susceptible to Leishmania donovani but have diminished hepatic immunopathology. Eur J Immunol. 2000;30(3):834–9.

    Article  CAS  PubMed  Google Scholar 

  29. Murray HW. Accelerated control of visceral Leishmania donovani infection in interleukin-6-deficient mice. Infect Immun. 2008;76(9):4088–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maroof A, et al. Therapeutic vaccination with recombinant adenovirus reduces splenic parasite burden in experimental visceral leishmaniasis. J Infect Dis. 2012;205(5):853–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pandey K, et al. Characterization of Leishmania isolates from Nepalese patients with visceral leishmaniasis. Parasitol Res. 2007;100(6):1361–9.

    Article  PubMed  Google Scholar 

  32. Murray HW. Cell-mediated immune response in experimental visceral leishmaniasis. II. Oxygen-dependent killing of intracellular Leishmania donovani amastigotes. J Immunol. 1982;129(1):351–7.

    CAS  PubMed  Google Scholar 

  33. Hommel M, Jaffe CL, Travi B, Milon G. Experimental models for leishmaniasis and for testing anti-leishmanial vaccines. Ann Trop Med Parasitol 89 Suppl 1995;1:55–73.

    Google Scholar 

  34. Requena JM, Soto M, Doria MD, Alonso C. Immune and clinical parameters associated with Leishmania infantum infection in the golden hamster model. Vet Immunol Immunopathol. 2000;76(3–4):269–81.

    Article  CAS  PubMed  Google Scholar 

  35. Melby PC, Chandrasekar B, Zhao W, Coe JE. The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Th1-like cytokine response. J Immunol. 2001;166(3):1912–20.

    Article  CAS  PubMed  Google Scholar 

  36. Dea-Ayuela MA, Rama-Iniguez S, Alunda JM, Bolas-Fernandez F. Setting new immunobiological parameters in the hamster model of visceral leishmaniasis for in vivo testing of antileishmanial compounds. Vet Res Commun. 2007;31(6):703–17.

    Article  CAS  PubMed  Google Scholar 

  37. Melby PC, Tryon VV, Chandrasekar B, Freeman GL. Cloning of Syrian hamster (Mesocricetus auratus) cytokine cDNAs and analysis of cytokine mRNA expression in experimental visceral leishmaniasis. Infect Immun. 1998;66(5):2135–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Goto H, Prianti M. Immunoactivation and immunopathogeny during active visceral leishmaniasis. Rev Inst Med Trop Sao Paulo. 2009;51(5):241–6.

    Article  PubMed  Google Scholar 

  39. Tracey KJ, et al. Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation. J Exp Med. 1988;167(3):1211–27.

    Article  CAS  PubMed  Google Scholar 

  40. Chapman WL Jr, Hanson WL, Waits VB, Kinnamon KE. Antileishmanial activity of selected compounds in dogs experimentally infected with Leishmania donovani. Rev Inst Med Trop Sao Paulo. 1979;21(4):189–93.

    CAS  PubMed  Google Scholar 

  41. Rioux JA, Golvan YJ, Croset H, Houin R. [Leishmanioses in the Mediterranean “Midi”: results of an ecologic survey] (Translated from fre). Bull Soc Pathol Exot Filiales. 1969;62(2):332–3 (in fre).

    CAS  PubMed  Google Scholar 

  42. Pinelli E, et al. Cellular and humoral immune responses in dogs experimentally and naturally infected with Leishmania infantum. Infect Immun. 1994;62(1):229–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pinelli E, et al. Infection of a canine macrophage cell line with leishmania infantum: determination of nitric oxide production and anti-leishmanial activity. Vet Parasitol. 2000;92(3):181–9.

    Article  CAS  PubMed  Google Scholar 

  44. Chapman WL Jr, Hanson WL, Hendricks LD. Toxicity and efficacy of the antileishmanial drug meglumine antimoniate in the owl monkey (Aotus trivirgatus). J Parasitol. 1983;69(6):1176–7.

    Article  CAS  PubMed  Google Scholar 

  45. Chapman WL Jr, Hanson WL. Visceral leishmaniasis in the squirrel monkey (Saimiri sciurea). J Parasitol. 1981;67(5):740–1.

    Article  PubMed  Google Scholar 

  46. Anuradha et al. The Indian langur: preliminary report of a new nonhuman primate host for visceral leishmaniasis. Bull World Health Organ 1992;70(1):63–72.

    Google Scholar 

  47. Dube A, et al. Leishmania donovani: cellular and humoral immune responses in Indian langur monkeys, Presbytis entellus. Acta Trop. 1999;73(1):37–48.

    Article  CAS  PubMed  Google Scholar 

  48. Gifawesen C, Farrell JP. Comparison of T-cell responses in self-limiting versus progressive visceral Leishmania donovani infections in golden hamsters. Infect Immun. 1989;57(10):3091–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pearson RD, Roberts D. Host immunoglobulin on spleen-derived Leishmania donovani amastigotes. Am J Trop Med Hyg. 1990;43(3):263–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasutaka Osada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Osada, Y., Omachi, S., Sanjoba, C., Matsumoto, Y. (2016). Animal Models of Visceral Leishmaniasis and Applicability to Disease Control. In: Noiri, E., Jha, T. (eds) Kala Azar in South Asia. Springer, Cham. https://doi.org/10.1007/978-3-319-47101-3_23

Download citation

Publish with us

Policies and ethics