Skip to main content

PhenoSat – A Tool for Remote Sensing Based Analysis of Vegetation Dynamics

  • Chapter
  • First Online:
Multitemporal Remote Sensing

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 20))

Abstract

PhenoSat is a software tool that extracts phenological information from satellite based vegetation index time-series. This chapter presents PhenoSat and tests its main characteristics and functionalities using a multi-year experiment and different vegetation types – vineyard and semi-natural meadows. Three important features were analyzed: (1) the extraction of phenological information for the main growing season, (2) detection and estimation of double growth season parameters, and (3) the advantages of selecting a sub-temporal region of interest. Temporal NDVI satellite data from SPOT VEGETATION and NOAA AVHRR were used. Six fitting methods were applied to filter the satellite noise data: cubic splines, piecewise-logistic, Gaussian models, Fourier series, polynomial curve-fitting and Savitzky-Golay. PhenoSat showed to be capable to extract phenological information consistent with reference measurements, presenting in some cases correlations above 70 % (n = 10; p ≤ 0.012). The start of in-season regrowth in semi-natural meadows was detected with a precision lower than 10-days. The selection of a temporal region of interest, improve the fitting process (R-square increased from 0.596 to 0.997). This improvement detected more accurately the maximum vegetation development and provided more reliable results. PhenoSat showed to be capable to adapt to different vegetation types, and different satellite data sources, proving to be a useful tool to extract metrics related with vegetation dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen WA, Gausman HW, Richardson AJ, Thomas JR (1969) Interaction of isotropic light with a compact plant leaf. J Opt Soc Am 59:1376–1379

    Article  Google Scholar 

  • Allen WA, Gausman HW, Richardson AJ (1973) Willstater-stoll theory of leaf reflectance evaluated by ray tracing. Appl Opt 12:2448–2453

    Article  Google Scholar 

  • Atzberger C, Eilers PHC (2010) A smoothed 1-km resolution NDVI time series (1998–2008) for vegetation studies in South America. Int J Digital Earth 4:365–386

    Article  Google Scholar 

  • Atzberger C, Rembold F (2009) Estimation of inter-annual winter crop area variation and spatial distribution with low resolution NDVI data by using neural networks trained on high resolution images. Proc SPIE Remote Sens Agric Ecosyst Hydrol XI: 7472

    Google Scholar 

  • Baggiolini M (1952) Les stades repères dans le développement annuel de la vigne et leur utilization pratique. Revroman de Agric Vitic Arboric 8:4–6

    Google Scholar 

  • Beck PSA, Atzberger C, Hogda KA, Johansen B, Skidmore AK (2006) Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI. Remote Sens Environ 100(3):321–334

    Article  Google Scholar 

  • Bradley BA, Mustard JF (2008) Comparison of phenology trends by land cover class: a case study in the Great Basin, USA. Glob Chang Biol 14:334–346

    Article  Google Scholar 

  • Bradley B, Jacob R, Hermance J, Mustard J (2007) A curve fitting procedure to derive inter-annual phenologies from time-series of noisy satellite NDVI data. Remote Sens Environ 106:137–145

    Article  Google Scholar 

  • Cao R, Chen J, Shen M, Tang Y (2015) An improved logistic method for detecting spring vegetation phenology in grasslands from MODIS EVI time-series data. Agric For Meteorol 200:9–20

    Article  Google Scholar 

  • Carreiras JMB, Pereira JMC, Shimabukuro YE, Stroppiana D (2003) Evaluation of compositing algorithms over the Brazilian Amazon using SPOT-4 Vegetation data. Int J Remote Sens 24(17):3427–3440

    Article  Google Scholar 

  • Chen J, Jonsson P, Tamura M, Gu Z, Matsushita B, Eklundh L (2004) A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens Environ 91:332–334

    Article  Google Scholar 

  • Colditz RR, Conrad C, Wehrmann T, Schmidt M, Dech S (2008) TiSeG: a flexible software tool for time-series generation of MODIS data utilizing the quality assessment science data set. IEEE Trans Geosci Remote Sens 46:3296–3308

    Article  Google Scholar 

  • Cracknell AP (1997) The advanced very high resolution radiometer. Taylors &Francis Publisher, London. ISBN 0-7484-0209-8

    Google Scholar 

  • Cunha M, Marcal ARS, Rodrigues A (2010) A comparative study of satellite and ground-based vineyard phenology. In: Proceedings of the 29th symposium on EARSeL, Chania, Greece, pp 68–77

    Google Scholar 

  • de Beurs KM, Henebry GM (2004) Land surface phenology, climatic variation, and institutional change: analyzing agricultural land cover change in Kazakhstan. Remote Sens Environ 89: 497–509

    Article  Google Scholar 

  • Eerens H, Haesen D, Rembold F, Urbano F, Tote C, Bydekerke L (2014) Image time series processing for agriculture monitoring. Environ Model Softw 53:154–162

    Article  Google Scholar 

  • Fontana F, Rixen C, Jonas T, Aberegg G, Wunderle S (2008) Alpine grassland phenology as seen in AVHRR, VEGETATION and MODIS NDVI time series – a comparison with in situ measurements. Sensors 8(4):2833–2853

    Article  Google Scholar 

  • Gao F, Morisette JT, Wolfe RE, Ederer G, Pedelty J, Masuoka E, Myneni R, Tan B, Nightingale J (2008) An algortithm to produce temporally and spatially continuous MODIS-LAI time series. IEEE Geosci Remote Sens Lett 5:60–64

    Article  Google Scholar 

  • Gausman HW, Allen WA (1973) Optical parameters of leaves of 30 plant species. Plant Physiol 52:57–62

    Article  Google Scholar 

  • Gausman HW, Hart WG (1974) Reflectance of sooty mold fungus on citrus leaves over the 2.5 to 40-micrometer wavelenght interval. J Econ Entomol 67:479–480

    Article  Google Scholar 

  • Gausman HW, Allen WA, Myers VI, Cardenas R (1969) Reflectance and internal structure of cotton leaves Gossypium hirsutum L. Agron J 61:374–376

    Article  Google Scholar 

  • Gausman HW, Allen WA, Escobar DE (1974) Refractive index of plant cell walls. Appl Opt 13:109–111

    Article  Google Scholar 

  • Gobron N, Pinty B, Verstraete M, Widlowski J (2000) Development of spectral indices optimized for the VEGETATION instrument. Proc VEGETATION 2000:275–280

    Google Scholar 

  • Goshtasby A, Oneill WD (1994) Curve-fitting by a sum of Gaussians. CVGIP – Graph Models Image Process 56(4):281–288

    Article  Google Scholar 

  • Gutman GG (1991) Vegetation indexes from AVHRR – an update and future-prospects. Remote Sens Environ 35(2/3):121–136

    Article  Google Scholar 

  • Higham DJ, Higham NJ (2000) Matlab guide. SIAM, Philadelphia

    Google Scholar 

  • Holben BN (2007) Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens 7(11):1417–1434

    Article  Google Scholar 

  • Jonsson P, Eklundh L (2002) Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans Geosci Remote Sens 40(8):1824–1832

    Article  Google Scholar 

  • Jonsson P, Eklundh L (2004) TIMESAT – a program for analyzing time-series of satellite sensor data. Comput Geosci 30(8):833–845

    Article  Google Scholar 

  • JRC-CID: Joint Research Centre Community Image Data portal (2013) Available at http://cidportal.jrc.ec.europa.eu/home/. Accessed 13 July 2013

  • Julien Y, Sobrino JA (2009) Global land surface phenology trends from GIMMS database. Int J Remote Sens 30:3495–3513

    Article  Google Scholar 

  • Lhermitte S, Verbesselt J, Verstraeten WW, Coppin P (2011) A comparison of time series similarity measures for classification and change detection of ecosystem dynamics. Remote Sens Environ 115:3129–3152

    Article  Google Scholar 

  • Li Z, Kafatos M (2000) Interannual variability of vegetation in United States and its relation to El Nino/Southern Oscillation. Remote Sens Environ 71:239–247

    Article  Google Scholar 

  • Li XW, Strahler AH (1992) Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy-Effect of crown shape and mutual shadowing. IEEE Trans Geosci Remote Sens 30(2):276–292

    Article  Google Scholar 

  • Lovell JL, Graetz RD (2001) Filtering pathfinder AVHRR land NDVI data for Australia. Int J Remote Sens 22:2649–2654

    Article  Google Scholar 

  • Ma M, Veroustraete F (2006) Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China. Adv Space Res 37:835–840

    Article  Google Scholar 

  • McCloy KR, Lucht W (2004) Comparative evaluation of seasonal patterns in long time series of satellite image data and simulations of global vegetation model. IEEE Trans Geosci Remote Sens 42:140–153

    Article  Google Scholar 

  • McKellip R, Prados D, Ryan R, Ross K, Spruce J, Gasser G, Greer R (2008) Remote-sensing time series analysis, a vegetation monitoring tool. NASA Tech Briefs 32:63–64

    Google Scholar 

  • McKellip RD, Ross KW, Spruce JP, Smoot JC, Ryan RE, Gasser GE, Prados DL, Vaughan RD (2010) Phenological parameters estimation tool. NASA Tech Briefs, September 30. New York

    Google Scholar 

  • Mitra SK (2010) Digital signal processing: a computer-based approach, 4th edn. McGraw-Hill Science/Engineering/Math, Boston. ISBN 978-0077366766

    Google Scholar 

  • Montgomery D, Peck E, Vining G (2006) Introduction to linear regression analysis, 4th edn. Wiley, Hoboken

    Google Scholar 

  • Pocas I, Cunha M, Pereira LS (2012) Dynamics of mountain semi-natural grassland meadows inferred from SPOT-VEGETATION and field spectroradiometer data. Int J Remote Sens 33(14):4334–4355

    Article  Google Scholar 

  • Potter C, Tan PN, Steinbach M, Klooster S, Kumar V, Myneni R, Genovese V (2003) Major disturbance events in terrestrial ecosystems detected using global satellite data sets. Glob Chang Biol 9:1005–1021

    Article  Google Scholar 

  • Prados D, Ryan RE, Ross KW (2006) Remote sensing time series product tool. AGU Fall Metting 2006

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge, pp 766–768. ISBN 10:0521880688

    Google Scholar 

  • Reinsch CH (1967) Smoothing by spline functions. Numer Math 10:177–183

    Article  Google Scholar 

  • Rodrigues A, Marcal ARS, Cunha M (2013) Monitoring vegetation dynamics inferred by satellite data using the PhenoSat tool. IEEE Trans Geosci Remote Sens 51(4):2096–2104

    Article  Google Scholar 

  • Roerink GJ, Menenti M, Verhoef W (2000) Reconstructing cloud free NDVI composites using Fourier analysis of time series. Int J Remote Sens 21(9):1911–1917

    Article  Google Scholar 

  • Ross KW, Spiering BA, Kalcic MT (2009) Monitoring phenology as indicator for timing of nutrients inputs in northern gulf watersheds. Oceans’09 MTS/IEEE Conference, October 26–29, United States

    Google Scholar 

  • Sakamoto T, Yokozawa M, Toritani H, Shibayama M, Ishitsuka N, Ohno H (2005) A crop phenology detection method using time-series MODIS data. Remote Sens Environ 96:366–374

    Article  Google Scholar 

  • Sweets D, Reed B, Rowland J, Marko S (1999) A weighted least-squares approach to temporal smoothing of NDVI. Proc Am Soc Photog Remote Sens Conf 526–536

    Google Scholar 

  • Tan B, Morisette JT, Wolfe RE, Gao F, Ederer GA, Nightingale J, Pedelty JA (2011) An enhanced TIMESAT algorithm for estimation vegetation phenology metrics from MODIS data. IEEE J Select Top Appl Earth Obs Remote Sens 4(2):361–371

    Article  Google Scholar 

  • Tucker CJ, Hielkema JU, Roffey J (1985) The potential of satellite remote sensing of ecological conditions for survey and forecasting desert-locust activity. Int J Remote Sens 6(1):127–138

    Article  Google Scholar 

  • Udelhoven T (2011) TimeStats: a software tool for the retrieval of temporal patterns from global satellite archives. IEEE J Select Top Appl Earth Obs Remote Sens 4(2):310–317

    Article  Google Scholar 

  • Velleman P (1980) Definition and comparison of robust nonlinear data smoothing algorithms. J Am Stat Assoc 75:609–615

    Article  Google Scholar 

  • Verbesselt J, Hyndman R, Zeileis A, Culvenor D (2010) Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens Environ 114:2970–2980

    Article  Google Scholar 

  • Verbesselt J, Jonsson P, Lhermitte S, Jonckheere I, van Aardt J, Coppin P (2012) Relating time-series of meteorological and remote sensing indices to monitor vegetation moisture dynamics. In: Chen CH (ed) Signal and image processing for remote sensing. CRC Press, Boca Raton, pp 129–146

    Google Scholar 

  • Verschelde J (2007) Introduction to symbolic computation: MCS320. UIC, Dept of Math, Stat & CS, Springer

    Google Scholar 

  • Viovy N, Arino O, Belward A (1992) The Best Index Slope Extraction (BISE): a method for reducing noise in NDVI time-series. Int J Remote Sens 13:1585–1590

    Article  Google Scholar 

  • Woolley JT (1971) Reflectance and transmittance of light by leaves. Plant Phisiol 47:656–662

    Article  Google Scholar 

  • Zeng H, Jia G, Forbes BC (2013) Shifts in Artic phenology in response to climate and anthropogenic factors as detected from multiple satellite time series. Environ Res Lett 8:1–12

    Article  Google Scholar 

  • Zhang X, Friedl M, Schaaf C, Strahler A, Hodges J, Gao F, Reed F, Huete A (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84:471–475

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank JOINT RESEARCH CENTRE (Community Image Data portal) for providing access to the SPOT_VGT and AVHRR images.

Arlete Rodrigues would like to thank to Fundação para a Ciência e a Tecnologia (FCT) for the Doctoral Grant (SFRH/BD/62189/2009).

Part of this project was supported by European Regional Development Fund (ERDF), programme COMPETE and National funds by FCT – Fundação para a Ciência e a Tecnologia, project PTDC/AGR-AAM/67182/2006, LAMESAT_XXI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arlete Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Rodrigues, A., Marcal, A.R.S., Cunha, M. (2016). PhenoSat – A Tool for Remote Sensing Based Analysis of Vegetation Dynamics. In: Ban, Y. (eds) Multitemporal Remote Sensing. Remote Sensing and Digital Image Processing, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-47037-5_10

Download citation

Publish with us

Policies and ethics