Skip to main content

Behavior of Nanomaterials in Soft Soils: A Case Study

  • Chapter
  • First Online:
Nanoscience and Plant–Soil Systems

Part of the book series: Soil Biology ((SOILBIOL,volume 48))

  • 1895 Accesses

Abstract

This chapter presents an experimental investigation on the use of nanomaterials to improve Malaysian soft soils. Tests were carried out on three soils collected from three different sites in Malaysia, where soils used were classified according to Unified Soil Classification System (ASTM 2005), respectively, as organic silty soil (OL), clay high plasticity soil (CH). and high plasticity silt soil (MH). Three nanomaterials were used, namely, nano-copper, nano-alumina, and nano-magnesium. To understand the interaction mechanism between the clay particles and nanomaterials, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were carried out on representative samples. Results of the investigation showed significant improvement in plasticity index. Thus, the addition of nanomaterials has a significant effect on behavior of the soft soils, provided that the amount of nanomaterials added is small (≤1.0 %).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhnoukh AK (2013) Overview of nanotechnology applications in construction industry in the united states. Micro Nanosyst 5:147–153

    Article  CAS  Google Scholar 

  • Amorim CLG, Lopes RT, Barroso RC, Queiroz JC, Alves DB, Perez CA, Schelin HR (2007) Effect of clay–water interactions on clay swelling by X-ray diffraction. Nucl Inst Methods Phys Res A 580:768–770. doi:10.1016/j.nima.2007.05.103

    Article  CAS  Google Scholar 

  • Bertaux J, Fröhlich F, Ildefonse P (1998) Multicomponent analysis of FTIR spectra: quantification of amorphous and crystallized mineral phases in synthetic and natural sediments. J Sediment Res 68:440–447

    Article  CAS  Google Scholar 

  • Bhushan B (2007) Springer handbook of nanotechnology. Springer, New York

    Book  Google Scholar 

  • Brar S, Verma M, Tyagi R, Surampalli R (2009) Nanoparticles. Contamin Emerg Environ Concern 416–445. doi:10.1061/9780784410141.ch11

  • Calik U, Sadoglu E (2014) Classification, shear strength, and durability of expansive clayey soil stabilized with lime and perlite. Nat Hazards 71:1289–1303

    Article  Google Scholar 

  • Du C, Linker R, Shaviv A (2008) Identification of agricultural Mediterranean soils using mid-infrared photoacoustic spectroscopy. Geoderma 143:85–90. doi:10.1016/j.geoderma.2007.10.012

    Article  CAS  Google Scholar 

  • Falvo M, Superfine R (2000) Mechanics and friction at the nanometer scale. J Nanopart Res 2:237–248

    Article  Google Scholar 

  • Givi AN, Abdul Rashid S, Aziz FNA, Mohd Salleh MA (2011) Particle size effect on the permeability properties of nano-SiO2 blended Portland cement concrete. J Compos Mater 45:1173–1180

    Article  CAS  Google Scholar 

  • Gritco A, Moldovan M, Grecu R, Simon V (2005) Thermal and infrared analyses of aluminosilicate glass systems for dental implants. J Optoelectron Adv Mater 7:2845–2847

    CAS  Google Scholar 

  • Hosseini P, Booshehrian A, Farshchi S (2010) Influence of nano-SiO2 addition on microstructure and mechanical properties of cement mortars for ferrocement.

    Google Scholar 

  • Kempfert H-G, Gebreselassie B (2006) Excavations and foundations in soft soils. Springer, Berlin

    Google Scholar 

  • Lee J, Mahendra S, Alvarez PJJ (2010) Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4:3580–3590

    Article  CAS  PubMed  Google Scholar 

  • Manoharan C, Sutharsan P, Dhanapandian S, Venkatachalapathy R (2012) Spectroscopic and thermal analysis of red clay for industrial applications from Tamilnadu, India. J Mol Struct 1027:99–103. doi:10.1016/j.molstruc.2012.05.079

    Article  CAS  Google Scholar 

  • Mercier JP, Zambelli G, Kurz W (2002) Introduction to materials science. Elsevier Science, Kidington

    Google Scholar 

  • Millogo Y, Hajjaji M, Ouedraogo R, Gomina M (2008) Cement-lateritic gravels mixtures: microstructure and strength characteristics. Construct Build Mater 22:2078–2086. doi:10.1016/j.conbuildmat.2007.07.019

    Article  Google Scholar 

  • Mo L, Deng M, Wang A (2012) Effects of MgO-based expansive additive on compensating the shrinkage of cement paste under non-wet curing conditions. Cem Concr Compos 34:377–383. doi:10.1016/j.cemconcomp.2011.11.018

    Article  CAS  Google Scholar 

  • Montesh G (2005) Swelling-shrinkage measurements of bentonite using coupled environmental scanning electron microscopy and digital image analysis. J Colloid Interface Sci 284:271–277

    Article  CAS  Google Scholar 

  • Montesh G, Duplay J, Martinez L, Mendoza C (2003) Swelling-shrinkage kinetics of Mx80 bentonite. Appl Clay Sci 22:279–293

    Article  CAS  Google Scholar 

  • Muhunthan B, Sariosseiri F, WSDOT Research and Library Services (2008) Interpretation of geotechnical properties of cement treated soils. Washington State Department of Transportation, Office of Research and Library Services

    Google Scholar 

  • Olga SSK, Hanna D (2014) Nanotechnology based thermosets. Handbook of thermoset plastics, 3rd edn. Elsevier, Amsterdam, pp 623–695

    Google Scholar 

  • Pacheco-Torgal F, Jalali S (2011) Nanotechnology: advantages and drawbacks in the field of construction and building materials. Construct Build Mater 25:582–590

    Article  Google Scholar 

  • Poole CP, Owens FJ (2003) Introduction to nanotechnology. Wiley, Hoboken

    Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart Article ID 963961. doi:10.1155/2014/963961

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330

    Article  Google Scholar 

  • Rahmat MN, Kinuthia JM (2011) Effects of mellowing sulfate-bearing clay soil stabilized with wastepaper sludge ash for road construction. Eng Geol 117:170–179

    Article  Google Scholar 

  • Raj PP (1995) Geotechnical engineering. Tata McGraw-Hill, New Delhi

    Google Scholar 

  • Sariosseiri F, Muhunthan B (2009) Effect of cement treatment on geotechnical properties of some Washington State soils. Eng Geol 104:119–125

    Article  Google Scholar 

  • Shand MA (2006) The chemistry and technology of magnesia. Wiley, New York

    Book  Google Scholar 

  • Sobolev K, Gutiérrez MF (2005) How nanotechnology can change the concrete world. Am Ceram Soc Bull 84:14–18

    Google Scholar 

  • Sobolev K, Sanchez F (2012) The application of nanoparticles to improve the performance of concrete. Anjuran American Concrete Institute, ACI. Agios Nikolaos, Crete

    Google Scholar 

  • Sobolev K, Flores I, Hermosillo R, Torres-Martinez L (2008) Nanomaterials and nanotechnology for high-performance cement composites, vol 254. ACI Special Publication, American Concrete Institute, pp 93–120

    Google Scholar 

  • Taha M, Taha O (2012) Influence of nano-material on the expansive and shrinkage soil behavior. J Nanopart Res 14:1–13. doi:10.1007/s11051-012-1190-0

    Article  Google Scholar 

  • Ubertini F, Materazzi AL, D’Alessandro A, Laflamme S (2014) Natural frequencies identification of a reinforced concrete beam using carbon nanotube cement-based sensors. Eng Struct 60:265–275

    Article  Google Scholar 

  • Zhang T, Cheeseman CR, Vandeperre LJ (2011) Development of low pH cement systems forming magnesium silicate hydrate (M-S-H). Cem Concr Res 41:439–442. doi:10.1016/j.cemconres.2011.01.016

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaid Hameed Majeed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Majeed, Z.H., Taha, M.R. (2017). Behavior of Nanomaterials in Soft Soils: A Case Study. In: Ghorbanpour, M., Manika, K., Varma, A. (eds) Nanoscience and Plant–Soil Systems. Soil Biology, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-46835-8_7

Download citation

Publish with us

Policies and ethics