Skip to main content

3D-Cultured Cell Image Acquisition

  • Chapter
  • First Online:
Microarray Bioprinting Technology
  • 543 Accesses

Abstract

Acquiring high-content images of 3D-cultured cells for analyzing multiple cellular events is a daunting task, requiring an automated fluorescent microscope and high-throughput image analysis software. High throughput is an important feature for high-content imaging (HCI) devices to enable rapid image acquisition. Various factors come into play when dealing with the speed of image acquisition. For example, capturing large number of cells with lower magnification or reducing sample volume/size can increase data acquisition speed. In addition, reducing exposure time with the use of high intensity light sources, optimizing fluorescence staining protocols for brighter colors, and using an objective lens with relatively high numerical aperture also significantly increases the image acquisition speed [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buchser, W., Collins, M., Garyantes, T., Guha, R., Haney, S., Lemmon, V., et al. (2012). Assay development guidelines for image-based high content screening, high content analysis and high content imaging. In S. GS, C. NP, H. Nelson, M. Arkin, D. Auld, C. Austin, et al. (Eds.), Assay guidance manual. (pp. 1–69). Bethesda, MD: Eli Lilly & Company and the National Center for Advancing Translational Sciences.

    Google Scholar 

  2. Talbot, C. B., McGinty, J., Grant, D. M., McGhee, E. J., Owen, D. M., Zhang, W., et al. (2008). High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis. Journal of Biophotonics, 1(6), 514–521. doi:10.1002/jbio.200810054.

    Article  PubMed  Google Scholar 

  3. Celli, J. P., Rizvi, I., Blanden, A. R., Massodi, I., Gidden, M. D., Pogue, B. W., et al. (2014). An imaging-based platform for high-content, quantitative evaluation of therapeutic response in 3D tumour models. Scientific Reports. doi:10.1038/srep03751.

    PubMed  PubMed Central  Google Scholar 

  4. Romano, S. N., & Gorelick, D. A. (2014). Semi-automated imaging of tissue-specific fluorescence in Zebrafish Embryos. Journal of Visualized Experiments, 87, e51533. doi:10.3791/51533.

    Google Scholar 

  5. Bickle, M. (2010). The beautiful cell: High-content screening in drug discovery. Analytical and Bioanalytical Chemistry, 398, 219–226. doi:10.1007/s00216-010-3788-3.

    Article  CAS  PubMed  Google Scholar 

  6. Jahr, W., Schmid, B., Schmied, C., Fahrbach, F. O., & Huisken, J. (2015). Hyperspectral light sheet microscopy. Nature Communications, 6, 1–7. doi:10.1038/ncomms8990.

    Article  Google Scholar 

  7. Reynaud, E. G., Peychl, J., Huisken, J., & Tomancak, P. (2015). Guide to light-sheet microscopy for adventurous biologists. Nature Methods, 12(1), 30–34. doi:10.1038/nmeth.3222.

    Article  CAS  PubMed  Google Scholar 

  8. Rae Chi, K. (2012). High on high content: A guide to some new and improved high-content screening systems. The Scientist Magazine, 1–7.

    Google Scholar 

  9. Starkuviene, V., & Pepperkok, R. (2007). The potential of high-content high-throughput microscopy in drug discovery. British Journal of Pharmacology, 152(1), 62–71. doi:10.1038/sj.bjp.0707346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

In the S+ Scanner, the following four filter sets are installed.

  1. 1.

    Multiband filter

Model (Semrock)

DA/FI/TR/Cy5-A-000 (Multi-band)

figure a

http://www.semrock.com/SetDetails.aspx?id=2777

  1. 2.

    Orange filter

Model (Semrock)

TxRed-4040C-000 (RED)

figure b

http://www.semrock.com/SetDetails.aspx?id=2799

  1. 3.

    Blue filter

Model (Semrock)

DAPI-5060C-000 (Blue)

figure c

http://www.semrock.com/SetDetails.aspx?id=2779

  1. 4.

    Green filter

Model (Omega)

XF404 (Green)

figure d

http://www.omegafilters.com/Products/Curvomatic

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Joshi, P., Yu, KN., Serbinowski, E., Lee, MY. (2016). 3D-Cultured Cell Image Acquisition. In: Lee, MY. (eds) Microarray Bioprinting Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-46805-1_6

Download citation

Publish with us

Policies and ethics