Skip to main content

HIV-1 Resistance to Integrase Inhibitors

  • Chapter
  • First Online:
Antimicrobial Drug Resistance

Abstract

Over the past three decades, new antiretroviral drugs have been rapidly developed and expanded for use in the clinic. Antiretroviral therapy (ART) generally combines at least three different drugs for treatment of HIV-infected patients. As more new antiretroviral drugs (ARVs) belonging to different classes have become available, ART has greatly decreased the death rate due to HIV-1 infection [1]. To date, 29 antiretroviral drugs have been approved by the Food and Drug Administration (FDA) and are available for treatment of HIV-1 infections. These drugs are classified into six distinct classes based on their molecular mechanism and resistance profiles: nucleoside-analog reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), integrase inhibitors, protease inhibitors (PIs), fusion inhibitors, and coreceptor antagonists. However, HIV can rapidly mutate and develop resistance to all currently used anti-HIV drugs [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Broder S. The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic. Antiviral Res. 2010;85(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  2. Wainberg MA, Zaharatos GJ, Brenner BG. Development of antiretroviral drug resistance. N Engl J Med. 2011;365(7):637–46.

    Article  CAS  PubMed  Google Scholar 

  3. Abdel-Magid AF. HIV integrase inhibitors for treatment of HIV infections and AIDS. ACS Med Chem Lett. 2014;5(2):102–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mesplede T, Wainberg MA. Integrase strand transfer inhibitors in HIV therapy. Infect Dis Ther. 2013;2(2):83–93.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Park TE, et al. Review of integrase strand transfer inhibitors for the treatment of human immunodeficiency virus infection. Expert Rev Anti Infect Ther. 2015;13(10):1195–212.

    Article  CAS  PubMed  Google Scholar 

  6. Blanco JL, et al. HIV integrase inhibitors: a new era in the treatment of HIV. Expert Opin Pharmacother. 2015;16(9):1313–24.

    Article  CAS  PubMed  Google Scholar 

  7. White KL, Raffi F, Miller MD. Resistance analyses of integrase strand transfer inhibitors within phase 3 clinical trials of treatment-naive patients. Viruses. 2014;6(7):2858–79.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Quashie PK, Mesplede T, Wainberg MA. Evolution of HIV integrase resistance mutations. Curr Opin Infect Dis. 2013;26(1):43–9.

    CAS  PubMed  Google Scholar 

  9. Grobler JA, Hazuda DJ. Resistance to HIV integrase strand transfer inhibitors: in vitro findings and clinical consequences. Curr Opin Virol. 2014;8c:98–103.

    Google Scholar 

  10. Geretti AM, Armenia D, Ceccherini-Silberstein F. Emerging patterns and implications of HIV-1 integrase inhibitor resistance. Curr Opin Infect Dis. 2012;25(6):677–86.

    Article  CAS  PubMed  Google Scholar 

  11. Mesplede T, Wainberg MA. Resistance against integrase strand transfer inhibitors and relevance to HIV persistence. Viruses. 2015;7(7):3703–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wainberg MA, Han YS. Will drug resistance against dolutegravir in initial therapy ever occur? Front Pharmacol. 2015;6:90.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Osterholzer DA, Goldman M. Dolutegravir: a next-generation integrase inhibitor for treatment of HIV infection. Clin Infect Dis. 2014;59(2):265–71.

    Article  PubMed  Google Scholar 

  14. Dow DE, Bartlett JA. Dolutegravir, the second-generation of integrase strand transfer inhibitors (INSTIs) for the treatment of HIV. Infect Dis Ther. 2014;3:83–103.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hurt CB, et al. Resistance to HIV integrase strand transfer inhibitors among clinical specimens in the United States, 2009–2012. Clin Infect Dis. 2014;58(3):423–31.

    Article  CAS  PubMed  Google Scholar 

  16. Fourati S, et al. Cross-resistance to elvitegravir and dolutegravir in 502 patients failing on raltegravir: a French national study of raltegravir-experienced HIV-1-infected patients. J Antimicrob Chemother. 2015;70(5):1507–12.

    Article  CAS  PubMed  Google Scholar 

  17. Mesplede T, Wainberg MA. Is resistance to dolutegravir possible when this drug is used in first-line therapy? Viruses. 2014;6(9):3377–85.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cooper DA, et al. Subgroup and resistance analyses of raltegravir for resistant HIV-1 infection. N Engl J Med. 2008;359(4):355–65.

    Article  CAS  PubMed  Google Scholar 

  19. Mbisa JL, Martin SA, Cane PA. Patterns of resistance development with integrase inhibitors in HIV. Infect Drug Resist. 2011;4:65–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cruciani M, Malena M. Combination dolutegravir-abacavir-lamivudine in the management of HIV/AIDS: clinical utility and patient considerations. Patient Prefer Adherence. 2015;9:299–310.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Taha H, Das A, Das S. Clinical effectiveness of dolutegravir in the treatment of HIV/AIDS. Infect Drug Resist. 2015;8:339–52.

    PubMed  PubMed Central  Google Scholar 

  22. Kobayashi M, et al. In vitro antiretroviral properties of S/GSK1349572, a next-generation HIV integrase inhibitor. Antimicrob Agents Chemother. 2011;55(2):813–21.

    Article  CAS  PubMed  Google Scholar 

  23. Eron JJ, et al. Safety and efficacy of dolutegravir in treatment-experienced subjects with raltegravir-resistant HIV type 1 infection: 24-week results of the VIKING Study. J Infect Dis. 2013;207(5):740–8.

    Article  CAS  PubMed  Google Scholar 

  24. Castagna A, et al. Dolutegravir in antiretroviral-experienced patients with raltegravir- and/or elvitegravir-resistant HIV-1: 24-week results of the phase III VIKING-3 study. J Infect Dis. 2014;210(3):354–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cavalcanti Jde S, et al. High frequency of dolutegravir resistance in patients failing a raltegravir-containing salvage regimen. J Antimicrob Chemother. 2015;70(3):926–9.

    Article  PubMed  Google Scholar 

  26. Quashie PK, et al. Characterization of the R263K mutation in HIV-1 integrase that confers low-level resistance to the second-generation integrase strand transfer inhibitor dolutegravir. J Virol. 2012;86(5):2696–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mesplede T, et al. Viral fitness cost prevents HIV-1 from evading dolutegravir drug pressure. Retrovirology. 2013;10:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cahn P, et al. Dolutegravir versus raltegravir in antiretroviral-experienced, integrase-inhibitor-naive adults with HIV: week 48 results from the randomised, double-blind, non-inferiority SAILING study. Lancet. 2013;382(9893):700–8.

    Article  CAS  PubMed  Google Scholar 

  29. Quashie PK, et al. Biochemical analysis of the role of G118R-linked dolutegravir drug resistance substitutions in HIV-1 integrase. Antimicrob Agents Chemother. 2013;57(12):6223–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fantauzzi A, Mezzaroma I. Dolutegravir: clinical efficacy and role in HIV therapy. Ther Adv Chronic Dis. 2014;5(4):164–77.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wainberg MA, Mesplede T, Raffi F. What if HIV were unable to develop resistance against a new therapeutic agent? BMC Med. 2013;11:249.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hightower KE, et al. Dolutegravir (S/GSK1349572) exhibits significantly slower dissociation than raltegravir and elvitegravir from wild-type and integrase inhibitor-resistant HIV-1 integrase-DNA complexes. Antimicrob Agents Chemother. 2011;55(10):4552–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grobler JA, Stillmock KA, Miller MD, Hazuda DJ. Mechanism by which the HIV integrase active site mutation N155H confers resistance to raltegravir. In: XVII HIV drug resistance workshop, Sitges, Spain.

    Google Scholar 

  34. Hare S, et al. Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc Natl Acad Sci U S A. 2010;107(46):20057–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hare S, et al. Structural and functional analyses of the second-generation integrase strand transfer inhibitor dolutegravir (S/GSK1349572). Mol Pharmacol. 2011;80(4):565–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. DeAnda F, et al. Dolutegravir interactions with HIV-1 integrase-DNA: structural rationale for drug resistance and dissociation kinetics. PLoS One. 2013;8(10):e77448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xue W, et al. Exploring the molecular mechanism of cross-resistance to HIV-1 integrase strand transfer inhibitors by molecular dynamics simulation and residue interaction network analysis. J Chem Inf Model. 2013;53(1):210–22.

    Article  CAS  PubMed  Google Scholar 

  38. Malet I, et al. New raltegravir resistance pathways induce broad cross-resistance to all currently used integrase inhibitors. J Antimicrob Chemother. 2014;69(8):2118–22.

    Article  CAS  PubMed  Google Scholar 

  39. Young B, et al. Transmission of integrase strand-transfer inhibitor multidrug-resistant HIV-1: case report and response to raltegravir-containing antiretroviral therapy. Antivir Ther. 2011;16(2):253–6.

    Article  PubMed  Google Scholar 

  40. Volpe JM, Walworth CM, et al. Absence of integrase inhibitor resistant HIV-1 transmission in the California AIDS healthcare foundation network. In: ICAAC 2015 conference, San Diego, 2015. Abstract no LB3389.

    Google Scholar 

  41. Casadella M, et al. Primary resistance to integrase strand-transfer inhibitors in Europe. J Antimicrob Chemother. 2015;70(10):2885–8.

    Article  CAS  PubMed  Google Scholar 

  42. Jeanfreau K, et al. Prevalence of integrase strand inhibitor resistance (INSTI)in New Orleans, Louisiana, 2012–2013. J La State Med Soc. 2015;167(1):19–20.

    PubMed  Google Scholar 

  43. Stekler JD, et al. Lack of resistance to integrase inhibitors among antiretroviral-naive subjects with primary HIV-1 infection, 2007–2013. Antivir Ther. 2015;20(1):77–80.

    Article  CAS  PubMed  Google Scholar 

  44. Buzon MJ, et al. Long-term antiretroviral treatment initiated at primary HIV-1 infection affects the size, composition, and decay kinetics of the reservoir of HIV-1-infected CD4 T cells. J Virol. 2014;88(17):10056–65.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hocqueloux L, et al. Long-term antiretroviral therapy initiated during primary HIV-1 infection is key to achieving both low HIV reservoirs and normal T cell counts. J Antimicrob Chemother. 2013;68(5):1169–78.

    Article  CAS  PubMed  Google Scholar 

  46. Hassounah SA, et al. Characterization of the drug resistance profiles of integrase strand transfer inhibitors in SIVmac239. J Virol. 2015;89:12002–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wares M, et al. Simian-tropic HIV as a model to study drug resistance against integrase inhibitors. Antimicrob Agents Chemother. 2015;59(4):1942–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research performed in our laboratory is funded by the Canadian Institutes for Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Wainberg Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Han, YS., Mesplède, T., Wainberg, M.A. (2017). HIV-1 Resistance to Integrase Inhibitors. In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-46718-4_37

Download citation

Publish with us

Policies and ethics