Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 511))

Included in the following conference series:

Abstract

The primary idea of the IP Fast Reroute (IPFRR) technology is to reduce the network recovery time after a link or router failure within an ISP network. The key feature of existing IPFRR mechanisms for reaching low recovery time is the usage of pre-computed alternative backup paths. These alternative backup paths have to be pre-calculated before a network failure will occur.

The calculation of the alternative backup path utilizes the specific information about destination networks, and thus most of existing IPFRR mechanisms are dependent on the distance-vector routing protocols (RIP, EIGRP). Other IPFRR mechanisms requires an additional information about the network topology, and therefore strongly depend on the usage of link-state routing protocols (OSPF, IS-IS). The paper is focusing on the analysis of existing IPFRR mechanisms and is identifying and presenting theirs primary problematic areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pan, A., Swallow, G., Atlas, A.: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, RFC 4090, Network Working Group, pp 3–15 (2005)

    Google Scholar 

  2. Shand, M., Bryant, S.: IP Fast Reroute Framework, RFC 5714, Internet Engineering Task Force, Informational, pp. 5–7 (2010). ISSN: 2070-1721

    Google Scholar 

  3. Gjoka, M., Ram, V., Yang, X.: Evaluation of IP Fast Reroute proposals. In: 2nd International Conference, COMSWARE 2007, pp. 1–8 (2007)

    Google Scholar 

  4. Hassan, A.T.: Evaluation of fast reroute mechanisms in broadband networks, p. 1. Master of Electrical and Computer Engineering, University of Ottawa (2010)

    Google Scholar 

  5. Antonakopoulos, S., Bejerano, Y., Koppol, P.: A Simple IP Fast Reroute Scheme for Full Coverage, p. 1. BellLabs, Murray Hill (2012)

    Google Scholar 

  6. Katz, D., Ward, D.: Bidirectional Forwarding Detection (BFD). Request for Comments: 5880, Standards Track, IETF, pp. 1–50 (2010). ISSN: 2070-1721

    Google Scholar 

  7. Hopps, C.: Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2992, Informational, Network Working Group, pp. 1–5 (2000)

    Google Scholar 

  8. Atlas, A., Zinin, A. (eds.): Basic Specification for IP Fast Reroute: Loop-Free Alternates, RFC 5286, Standards Track, Network Working Group, pp. 3–5 (2008)

    Google Scholar 

  9. Filsfils, C., Francois, P., Shand, M., Decraene, B., Uttaro, J., Leymann, N., Horneffer, M.: Loop-Free Alternate (LFA) Applicability in Service Provider (SP) Networks, RFC 6571, IETF, pp. 3–7 (2012). ISSN: 2070-1721

    Google Scholar 

  10. Bryant, S., Filsfils, C., Previdi, S., Shand, M., So, N.: Remote Loop-Free Alternate (LFA) Fast Re-Route (FRR). Network Working Group, RFC 7490, pp. 3–18 (2015)

    Google Scholar 

  11. Atlas, A., Kebler, R., Bowers, C., Enyedi, G., Csaszar, A., Tantsura, J., White, R.: An Architecture for IP/LDP Fast-Reroute Using Maximally Redundant Trees. Routing Area Working Group, Internet-Draft, pp. 3–33 (2015)

    Google Scholar 

  12. Bryant, S., Previdi, S., Shand, M.: A Framework for IP and MPLS Fast Reroute Using Not-Via Addresses, RFC 6981, Internet Engineering Task Force (IETF), pp. 4–25 (2013). ISSN: 2070-1721

    Google Scholar 

  13. Kvalbein, A., Hansen, A.F., Čičic, T., Gjessing, S., Lysne, O.: Multiple routing configurations for fast IP network recovery. IEEE/ACM Trans. Netw. 17(2), 1–4 (2009). IEEE

    Article  Google Scholar 

  14. Lor, S.S., Rio, M.: Enhancing Repair Coverage of Loop-Free Alternates, p. 3. University College London (2010)

    Google Scholar 

  15. Papneja, R., Vapiwala, S., Karthik, J., Poretsky, S., Rao, S., Le Roux, J.L.: Methodology for Benchmarking MPLS Traffic Engineered (MPLS-TE) Fast Reroute Protection, RFC 6894, IETF, pp. 3–27 (2013). ISSN: 2070-1721

    Google Scholar 

  16. Poretsky, S., Papneja, R., Karthik, J., Vapiwala, S.: Benchmarking Terminology for Protection Performance, RFC 6414, IETF, pp. 4–25 (2011). ISSN: 2070-1721

    Google Scholar 

  17. Deering, S.: Host Extensions for IP Multicasting, RFC 1112, Network Working Group, pp. 1–5 (1989)

    Google Scholar 

  18. Fenner, B., Handley, M., Kouvelas, I., Holbrook, H.: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), RFC 4601, Standards Track, Network Working Group, pp. 1–146 (2006)

    Google Scholar 

  19. Adams, A., Nicholas, J., Siadak, W.: Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised), RFC 3973, Network Working Group, pp. 4–10 (2010)

    Google Scholar 

Download references

Acknowledgments

This paper is the outcome of the project “Quality education by supporting innovative forms, quality research and international cooperation – a successful graduate for practice”, ITMS code 26110230090 supported by the Education Operational Program funded by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Papán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Papán, J., Segeč, P., Palúch, P., Mikuš, Ľ., Moravčík, M. (2017). The Survey of Current IPFRR Mechanisms. In: Janech, J., Kostolny, J., Gratkowski, T. (eds) Proceedings of the 2015 Federated Conference on Software Development and Object Technologies. SDOT 2015. Advances in Intelligent Systems and Computing, vol 511. Springer, Cham. https://doi.org/10.1007/978-3-319-46535-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46535-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46534-0

  • Online ISBN: 978-3-319-46535-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics