Skip to main content

Classifying the Arithmetical Complexity of Teaching Models

  • Conference paper
  • First Online:
Algorithmic Learning Theory (ALT 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9925))

Included in the following conference series:

  • 1177 Accesses

Abstract

This paper classifies the complexity of various teaching models by their position in the arithmetical hierarchy. In particular, we determine the arithmetical complexity of the index sets of the following classes: (1) the class of uniformly r.e. families with finite teaching dimension, and (2) the class of uniformly r.e. families with finite positive recursive teaching dimension witnessed by a uniformly r.e. teaching sequence. We also derive the arithmetical complexity of several other decision problems in teaching, such as the problem of deciding, given an effective coding \(\{{\mathcal {L}}_0,{\mathcal {L}}_1,{\mathcal {L}}_2,\ldots \}\) of all uniformly r.e. families, any e such that \({\mathcal {L}}_e = \{L^e_0,L^e_1,\ldots ,\}\), any i and d, whether or not the teaching dimension of \(L^e_i\) with respect to \({\mathcal {L}}_e\) is upper bounded by d.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    DS stands for “distinguishing set.”

  2. 2.

    MDS stands for “minimal distinguishing set.”

  3. 3.

    TDDP stands for “Teaching dimension decision problem.”

References

  1. Angluin, D.: Inductive inference of formal languages from positive data. Inf. Control 45(2), 117–135 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baliga, G., Case, J., Jain, S.: The synthesis of language learners. Inf. Comput. 152, 16–43 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beros, A.: Learning theory in the arithmetic hierarchy. J. Symbolic Logic 79(3), 908–927 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brandt, U.: The position of index sets of identifiable sets in the arithmetical hierarchy. Inf. Control 68, 185–195 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gold, E.M.: Language identification in the limit. Inf. Control 10, 447–474 (1967)

    Article  MATH  Google Scholar 

  6. Goldman, S.A., Kearns, M.J.: On the complexity of teaching. J. Comput. Syst. Sci. 50(1), 20–31 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hegedüs, T.: Generalised teaching dimensions and the query complexity of learning. In: Proceedings of the COLT, pp. 108–117 (1995)

    Google Scholar 

  8. de Jongh, D., Kanazawa, M.: Angluin’s theorem for indexed families of r.e. sets and applications. In: Proceedings of the COLT, pp. 193–204 (1996)

    Google Scholar 

  9. Klette, R.: Indexmengen und Erkennung Rekursiver Funktionen. Z. Math. Logik Grundlag. Math. 22, 231–238 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mazadi, Z., Gao, Z., Zilles, S.: Distinguishing pattern languages with membership examples. In: Dediu, A.-H., Janoušek, J., Martín-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 528–540. Springer, Heidelberg (2014). doi:10.1007/978-3-319-04921-2_43

    Chapter  Google Scholar 

  11. Pinker, S.: Formal models of language learning. Cognition 7, 217–283 (1979)

    Article  Google Scholar 

  12. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge (1987)

    MATH  Google Scholar 

  13. Shinohara, A., Miyano, S.: Teachability in computational learning. New Gener. Comput. 8(4), 337–347 (1991)

    Article  MATH  Google Scholar 

  14. Zilles, S., Lange, S., Holte, R., Zinkevich, M.: Models of cooperative teaching and learning. J. Mach. Learn. Res. 12, 349–384 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyuan Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Beros, A.A., Gao, Z., Zilles, S. (2016). Classifying the Arithmetical Complexity of Teaching Models. In: Ortner, R., Simon, H., Zilles, S. (eds) Algorithmic Learning Theory. ALT 2016. Lecture Notes in Computer Science(), vol 9925. Springer, Cham. https://doi.org/10.1007/978-3-319-46379-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46379-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46378-0

  • Online ISBN: 978-3-319-46379-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics