Skip to main content

Simple Deterministic Algorithms for Generating “Good” Musical Rhythms

  • Chapter
  • First Online:
Emergent Computation

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 24))

  • 1429 Accesses

Abstract

The most economical representation of a musical rhythm is as a binary sequence of symbols that represent sounds and silences, each of which have a duration of one unit of time. Such a representation is eminently suited to objective mathematical and computational analyses, while at the same time, and perhaps surprisingly, provides a rich enough structure to inform both music theory and music practice. A musical rhythm is considered to be “good” if it belongs to the repertoire of the musical tradition of some culture in the world, is used frequently as an ostinato or timeline, and has withstood the test of time. Here several simple deterministic algorithms for generating musical rhythms are reviewed and compared in terms of their computational complexity, applicability, and capability to capture “goodness.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamilton, A.: Aesthetics and Music. Continuum International Publishing Group, London (2007)

    Google Scholar 

  2. Hoenig, F.: Defining computational aesthetics. In: Neumann, L., Sbert, M., Gooch, B., Purgathofer, W. (eds.) Computational Aesthetics in Graphics, Visualization and Imaging, pp. 13–18 (2005)

    Google Scholar 

  3. Fishwick, P.: Aesthetic Computing. MIT Press (2006)

    Google Scholar 

  4. Birkhoff, G.D.: Aesthetic Measure. Harvard University Press, Cambridge (1933)

    Book  MATH  Google Scholar 

  5. Boselie, F., Leeuwenberg, E.: Birkhoff revisited: beauty as a function of effect and means. Am. J. Psychol. 98(1), 1–39 (1985)

    Article  Google Scholar 

  6. Garabedian, C.A.: Birkhoff on aesthetic measure. Bull. Am. Math. Soc. 40, 7–10 (1934)

    Article  Google Scholar 

  7. Montano, U.: Explaining Beauty in Mathematics: An Aesthetic Theory of Mathematics. Springer, Switzerland (2014)

    Book  MATH  Google Scholar 

  8. Spengler, O.: The Decline of the West. I. Knopf, New York (1926)

    Google Scholar 

  9. Zhang, K., Harrell, S., Ji, X.: Computational aesthetics: on the complexity of computer-generated paintings. Leonardo 45(3), 243–248 (2012)

    Article  Google Scholar 

  10. Edwards, M.: Algorithmic composition: computational thinking in music. Commun. ACM 54(7), 58–67 (2011)

    Article  Google Scholar 

  11. Pachet, F., Roy, P.: Musical harmonization with constraints: a survey. Constraints J. 6(1), 7–19 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Toussaint, G.T.: The rhythm that conquered the world: what makes a “good” rhythm good? Percussive Notes. November Issue, pp. 52–59 (2011)

    Google Scholar 

  13. Toussaint, G.T.: Generating “good” musical rhythms algorithmically. In: Proceedings of the 8th International Conference on Arts and Humanities, Honolulu, Hawaii, USA (2010)

    Google Scholar 

  14. Toussaint, G.T.: The Geometry of Musical Rhythm. Chapman-Hall-CRC Press (2013)

    Google Scholar 

  15. Harary, F.: Aesthetic tree patterns in graph theory. Leonardo 4(3), 227–231 (1971)

    Article  Google Scholar 

  16. Ahmed, Y., Haider, M.: Beauty measuring system based on the Divine Ratio. In: Proceedings of the International Conference on User Science and Engineering, pp. 207–210. IEEE (2010)

    Google Scholar 

  17. Davis, S.T., Jahnke, J.C.: Unity and the golden section: rules for aesthetic choice? Am. J. Psychol. 104(2), 257–277 (1991)

    Article  Google Scholar 

  18. Pallet, P.M., Link, S., Lee, K.: New “golden” ratios for facial beauty. Vision Res. 50(2), 149–154 (2010)

    Article  Google Scholar 

  19. Rigau, J., Feixas, M., Sbert, M.: Conceptualizing Birkhoff? Aesthetic measure using Shannon entropy and Kolmogorov complexity. In: Cunningham, D.W., Meyer, G., Neumann, L. (eds.) Computational Aesthetics in Graphics, Visualization, and Imaging. The Eurographics Association (2007)

    Google Scholar 

  20. Sinha, P., and Russell, R.: A perceptually-based comparison of image-similarity metrics. Perception 40 (2011)

    Google Scholar 

  21. Hedges, S.A.: Dice music in the eighteenth century. Music Lett. 59, 180–187

    Google Scholar 

  22. Xenakis, I., Kanach, S.: Formalized Music: Mathematics and Thought in Composition. Pendragon Press (1992)

    Google Scholar 

  23. Shinghal, R., Toussaint, G.T.: Experiments in text recognition with the modified Viterbi algorithm. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1, 184–193 (1979)

    Google Scholar 

  24. Shinghal, R., Toussaint, G.T.: The sensitivity of the modified Viterbi algorithm to the source statistics. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-2, 181–185 (1980)

    Google Scholar 

  25. Paiement, J.-F., Grandvalet, Y., Bengio, S., Eck, D.: A distance model for rhythms. In: International Conference on Machine Learning, New York, USA, pp. 736–743 (2008)

    Google Scholar 

  26. Burton, A.R., Vladimirova, T.: Generation of musical sequences with genetic techniques. Comput. Music J. 23(4), 59–73 (1999)

    Article  Google Scholar 

  27. Pachet, F.: Interacting with a musical learning system: The Continuator. In: Proceedings of the 2nd International Conference on Music and Artificial Intelligence, Edinburgh, Scotland, UK, September 12–14, pp. 119–132 (2002)

    Google Scholar 

  28. Horowitz, D.: Generating rhythms with genetic algorithms. In: Proceedings of the 12th National Conference of the American Association of Artificial Intelligence, Washington, USA, Seattle, p. 1459 (1994)

    Google Scholar 

  29. Maeda, Y., Kajihara, Y.: Rhythm generation method for automatic musical composition using genetic algorithm. In: IEEE International Conference on Fuzzy Systems, Barcelona, Spain, pp. 1–7 (2010)

    Google Scholar 

  30. Agawu, K.: Structural analysis or cultural analysis? Competing perspectives on the standard pattern of West African rhythm. J. Am. Musicol. Soc. 59(1), 1–46 (2006)

    Article  Google Scholar 

  31. Pressing, J.: Cognitive isomorphisms in World Music: West Africa, the Balkans. Thailand and western tonality. Stud. Music 17, 38–61 (1983)

    Google Scholar 

  32. Rahn, J.: Asymmetrical ostinatos in Sub-Saharan music: time, pitch, and cycles reconsidered. In Theory Only 9(7), 23–37 (1987)

    Google Scholar 

  33. Toussaint, G.T.: Mathematical features for recognizing preference in Sub-Saharan African traditional rhythm timelines. In: Proceedings of 3rd Conference on Advances in Pattern Recognition, Bath, United Kingdom, pp. 18–27 (2005)

    Google Scholar 

  34. Thul, E., Toussaint, G.T.: A comparative phylogenetic analysis of African timelines and North Indian talas. In: Proceedings of 11th BRIDGES: Mathematics, Music, Art, Architecture, and Culture, pp. 187–194 (2008)

    Google Scholar 

  35. Guastavino, C., Toussaint, G.T., Gómez, F., Marandola, F., Absar, R.: Rhythmic similarity in flamenco music: comparing psychological and mathematical measures. In: Proceedings of 4th Conference on Interdisciplinary Musicology, Thessaloniki, Greece, pp. 76–77 (2008)

    Google Scholar 

  36. Hagoel, K.: The Art of Middle Eastern Rhythm. OR-TAV, Kfar Sava, Israel (2003)

    Google Scholar 

  37. Wright, O.: The Modal System of Arab and Persian Music AD 1250–1300. Oxford University Press, Oxford (1978)

    Google Scholar 

  38. Touma, H.H.: The Music of the Arabs. Amadeus Press, Portland, Oregon (1996)

    Google Scholar 

  39. Franklin, P.: The Euclidean algorithm. Am. Math. Mon. 63(9), 663–664 (1956)

    Article  MathSciNet  Google Scholar 

  40. Toussaint, G.T.: The Euclidean algorithm generates traditional musical rhythms. In: Proceedings of BRIDGES: Mathematical Connections in Art, Music, and Science, Banff, Canada, pp. 47–56 (2005)

    Google Scholar 

  41. Toussaint, G.T.: The Euclidean algorithm generates traditional musical rhythms. Interalia Mag. 16 (2015) (Electronic publication: http://www.interaliamag.org)

  42. Clough, J., Douthett, J.: Maximally even sets. J. Music Theory 35, 93–173 (1991)

    Article  Google Scholar 

  43. Heath, T.L.: The Thirteen Books of Euclid’s Elements (2nd ed. [Facsimile. Original publication: Cambridge University Press, 1925] ed). Dover Publications, New York (1956)

    Google Scholar 

  44. Bjorklund, E.: A metric for measuring the evenness of timing system rep-rate patterns. Technical Note SNS-NOTE-CNTRL-100, Los Alamos National Laboratory, U.S.A. (2003)

    Google Scholar 

  45. Bjorklund, E.: The theory of rep-rate pattern generation in the SNS timing system. Technical Note SNS-NOTE-CNTRL-99, Los Alamos National Laboratory, U.S.A. (2003)

    Google Scholar 

  46. Butler, M.J.: Unlocking the Groove: Rhythm, Meter, and Musical Design in Electronic Dance Music. Indiana University Press, Bloomington and Indianapolis (2006)

    Google Scholar 

  47. Mills, S.: Healing Rhythms: The World of South Korea’s East Coast Hereditary Shamans. Ashgate, Aldershot, U.K. (2007)

    Google Scholar 

  48. Osborn, B.: Kid Algebra: Radiohead’s Euclidean and maximally even rhythms. Perspect. New Music 52(1), 81–105 (2014)

    Article  Google Scholar 

  49. Morales, E.: The Latin Beat-The Rhythms and Roots of Latin Music from Bossa Nova to Salsa and Beyond. Da Capo Press, Cambridge, MA (2003)

    Google Scholar 

  50. Kubik, G.: Africa and the Blues. University of Mississippi Press, Jackson (1999)

    Google Scholar 

  51. Arom, S.: African Polyphony and Polyrhythm. Cambridge University Press, Cambridge, UK (1991)

    Book  Google Scholar 

  52. Floyd Jr., S.A.: Black music in the circum-Caribbean. Am. Music 17(1), 1–38 (1999)

    Article  Google Scholar 

  53. Evans, B.: Authentic Conga Rhythms. Belwin Mills Publishing Corporation, Miami (1966)

    Google Scholar 

  54. Sasso, L.: Drum Mechanics: Ableton Live Tips and Techniques. In: Sound on Sound (2014). http://www.soundonsound.com/sos/dec14/articles/live-tech-1214.htm. Accessed 5 April 2016

  55. Albin, A., Weinberg, G., Egerstedt, M.: Musical abstractions in distributed multi-robot systems. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal, pp. 451–458 (2012)

    Google Scholar 

  56. Post, O., Toussaint, G.T.: The edit distance as a measure of perceived rhythmic similarity. Empirical Musicol. Rev. 6 (2011)

    Google Scholar 

  57. Locke, D.: Drum Gahu: An Introduction to African Rhythm. White Cliffs Media, Tempe, AZ (1998)

    Google Scholar 

  58. Peñalosa, D.: The Clave Matrix; Afro-Cuban Rhythm: Its Principles and African Origins. Bembe Inc., Redway, CA (2009)

    Google Scholar 

  59. Masuda, T., Gonzales, R., Kwan, L., Nisbet, R.E.: Culture and aesthetic preference: comparing the attention to context of East Asians and Americans. Pers. Soc. Psychol. Bull. 34(9), 1260–1275 (2008)

    Article  Google Scholar 

  60. Hannon, E.E., Soley, Ullal, S.: Rhythm perception: a cross-cultural comparison of American and Turkish listeners. J. Exp. Psychol.: Hum. Percept. Perform. Advance online publication (2012). doi:10.1037/a0027225

  61. Patel, A.D.: Music, Language, and the Brain. Oxford University Press, Oxford (2008)

    Google Scholar 

  62. Wilcken, L.: The Drums of Vodou. White Cliffs Media, Tempe, AZ (1992)

    Google Scholar 

  63. Gómez, F., Khoury, I., Kienzle, J., McLeish, E., Melvin, A., Pérez-Fernández, R., Rappaport, D., Toussaint, G.T.: Mathematical models for binarization and ternarization of musical rhythms. In: BRIDGES: Mathematical Connections in Art, Music, and Science, San Sebastian, Spain, pp. 99–108 (2007)

    Google Scholar 

  64. Toussaint, G.T.: Modeling musical rhythm mutations with geometric quantization. In: Melnik, R. (ed.) Mathematical and Computational Modeling: With Applications in Natural and Social Sciences, Engineering, and the Arts, pp. 299–308. Wiley (2015)

    Google Scholar 

  65. Pérez-Fernández, R.: La Binarización de los Ritmos Ternarios Africanos en América Latina. Casa de las Américas, Havana (1986)

    Google Scholar 

  66. Pérez-Fernández, R.: El mito del carácter invariable de las lineas temporales. Transcult. Music Rev. 11 (2007)

    Google Scholar 

  67. Liu, Y., Toussaint, G.T.: Mathematical notation, representation, and visualization of musical rhythm: a comparative perspective. Int. J. Mach. Learn. Comput. 2 (2012)

    Google Scholar 

  68. Toussaint, G.T.: A comparison of rhythmic dissimilarity measures. FORMA 21 (2006)

    Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Provost’s Office of New York University Abu Dhabi, through the Faculty of Science, in Abu Dhabi, United Arab Emirates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Godfried T. Toussaint .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Toussaint, G.T. (2017). Simple Deterministic Algorithms for Generating “Good” Musical Rhythms. In: Adamatzky, A. (eds) Emergent Computation . Emergence, Complexity and Computation, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-46376-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46376-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46375-9

  • Online ISBN: 978-3-319-46376-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics